PutBotInput

Struct PutBotInput 

Source
#[non_exhaustive]
pub struct PutBotInput {
Show 16 fields pub name: Option<String>, pub description: Option<String>, pub intents: Option<Vec<Intent>>, pub enable_model_improvements: Option<bool>, pub nlu_intent_confidence_threshold: Option<f64>, pub clarification_prompt: Option<Prompt>, pub abort_statement: Option<Statement>, pub idle_session_ttl_in_seconds: Option<i32>, pub voice_id: Option<String>, pub checksum: Option<String>, pub process_behavior: Option<ProcessBehavior>, pub locale: Option<Locale>, pub child_directed: Option<bool>, pub detect_sentiment: Option<bool>, pub create_version: Option<bool>, pub tags: Option<Vec<Tag>>,
}

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§name: Option<String>

The name of the bot. The name is not case sensitive.

§description: Option<String>

A description of the bot.

§intents: Option<Vec<Intent>>

An array of Intent objects. Each intent represents a command that a user can express. For example, a pizza ordering bot might support an OrderPizza intent. For more information, see how-it-works.

§enable_model_improvements: Option<bool>

Set to true to enable access to natural language understanding improvements.

When you set the enableModelImprovements parameter to true you can use the nluIntentConfidenceThreshold parameter to configure confidence scores. For more information, see Confidence Scores.

You can only set the enableModelImprovements parameter in certain Regions. If you set the parameter to true, your bot has access to accuracy improvements.

The Regions where you can set the enableModelImprovements parameter to true are:

  • US East (N. Virginia) (us-east-1)

  • US West (Oregon) (us-west-2)

  • Asia Pacific (Sydney) (ap-southeast-2)

  • EU (Ireland) (eu-west-1)

In other Regions, the enableModelImprovements parameter is set to true by default. In these Regions setting the parameter to false throws a ValidationException exception.

§nlu_intent_confidence_threshold: Option<f64>

Determines the threshold where Amazon Lex will insert the AMAZON.FallbackIntent, AMAZON.KendraSearchIntent, or both when returning alternative intents in a PostContent or PostText response. AMAZON.FallbackIntent and AMAZON.KendraSearchIntent are only inserted if they are configured for the bot.

You must set the enableModelImprovements parameter to true to use confidence scores in the following regions.

  • US East (N. Virginia) (us-east-1)

  • US West (Oregon) (us-west-2)

  • Asia Pacific (Sydney) (ap-southeast-2)

  • EU (Ireland) (eu-west-1)

In other Regions, the enableModelImprovements parameter is set to true by default.

For example, suppose a bot is configured with the confidence threshold of 0.80 and the AMAZON.FallbackIntent. Amazon Lex returns three alternative intents with the following confidence scores: IntentA (0.70), IntentB (0.60), IntentC (0.50). The response from the PostText operation would be:

  • AMAZON.FallbackIntent

  • IntentA

  • IntentB

  • IntentC

§clarification_prompt: Option<Prompt>

When Amazon Lex doesn't understand the user's intent, it uses this message to get clarification. To specify how many times Amazon Lex should repeat the clarification prompt, use the maxAttempts field. If Amazon Lex still doesn't understand, it sends the message in the abortStatement field.

When you create a clarification prompt, make sure that it suggests the correct response from the user. for example, for a bot that orders pizza and drinks, you might create this clarification prompt: "What would you like to do? You can say 'Order a pizza' or 'Order a drink.'"

If you have defined a fallback intent, it will be invoked if the clarification prompt is repeated the number of times defined in the maxAttempts field. For more information, see AMAZON.FallbackIntent.

If you don't define a clarification prompt, at runtime Amazon Lex will return a 400 Bad Request exception in three cases:

  • Follow-up prompt - When the user responds to a follow-up prompt but does not provide an intent. For example, in response to a follow-up prompt that says "Would you like anything else today?" the user says "Yes." Amazon Lex will return a 400 Bad Request exception because it does not have a clarification prompt to send to the user to get an intent.

  • Lambda function - When using a Lambda function, you return an ElicitIntent dialog type. Since Amazon Lex does not have a clarification prompt to get an intent from the user, it returns a 400 Bad Request exception.

  • PutSession operation - When using the PutSession operation, you send an ElicitIntent dialog type. Since Amazon Lex does not have a clarification prompt to get an intent from the user, it returns a 400 Bad Request exception.

§abort_statement: Option<Statement>

When Amazon Lex can't understand the user's input in context, it tries to elicit the information a few times. After that, Amazon Lex sends the message defined in abortStatement to the user, and then cancels the conversation. To set the number of retries, use the valueElicitationPrompt field for the slot type.

For example, in a pizza ordering bot, Amazon Lex might ask a user "What type of crust would you like?" If the user's response is not one of the expected responses (for example, "thin crust, "deep dish," etc.), Amazon Lex tries to elicit a correct response a few more times.

For example, in a pizza ordering application, OrderPizza might be one of the intents. This intent might require the CrustType slot. You specify the valueElicitationPrompt field when you create the CrustType slot.

If you have defined a fallback intent the cancel statement will not be sent to the user, the fallback intent is used instead. For more information, see AMAZON.FallbackIntent.

§idle_session_ttl_in_seconds: Option<i32>

The maximum time in seconds that Amazon Lex retains the data gathered in a conversation.

A user interaction session remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Lex deletes any data provided before the timeout.

For example, suppose that a user chooses the OrderPizza intent, but gets sidetracked halfway through placing an order. If the user doesn't complete the order within the specified time, Amazon Lex discards the slot information that it gathered, and the user must start over.

If you don't include the idleSessionTTLInSeconds element in a PutBot operation request, Amazon Lex uses the default value. This is also true if the request replaces an existing bot.

The default is 300 seconds (5 minutes).

§voice_id: Option<String>

The Amazon Polly voice ID that you want Amazon Lex to use for voice interactions with the user. The locale configured for the voice must match the locale of the bot. For more information, see Voices in Amazon Polly in the Amazon Polly Developer Guide.

§checksum: Option<String>

Identifies a specific revision of the $LATEST version.

When you create a new bot, leave the checksum field blank. If you specify a checksum you get a BadRequestException exception.

When you want to update a bot, set the checksum field to the checksum of the most recent revision of the $LATEST version. If you don't specify the checksum field, or if the checksum does not match the $LATEST version, you get a PreconditionFailedException exception.

§process_behavior: Option<ProcessBehavior>

If you set the processBehavior element to BUILD, Amazon Lex builds the bot so that it can be run. If you set the element to SAVE Amazon Lex saves the bot, but doesn't build it.

If you don't specify this value, the default value is BUILD.

§locale: Option<Locale>

Specifies the target locale for the bot. Any intent used in the bot must be compatible with the locale of the bot.

The default is en-US.

§child_directed: Option<bool>

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must specify whether your use of Amazon Lex is related to a website, program, or other application that is directed or targeted, in whole or in part, to children under age 13 and subject to the Children's Online Privacy Protection Act (COPPA) by specifying true or false in the childDirected field. By specifying true in the childDirected field, you confirm that your use of Amazon Lex is related to a website, program, or other application that is directed or targeted, in whole or in part, to children under age 13 and subject to COPPA. By specifying false in the childDirected field, you confirm that your use of Amazon Lex is not related to a website, program, or other application that is directed or targeted, in whole or in part, to children under age 13 and subject to COPPA. You may not specify a default value for the childDirected field that does not accurately reflect whether your use of Amazon Lex is related to a website, program, or other application that is directed or targeted, in whole or in part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed in whole or in part, to children under age 13, you must obtain any required verifiable parental consent under COPPA. For information regarding the use of Amazon Lex in connection with websites, programs, or other applications that are directed or targeted, in whole or in part, to children under age 13, see the Amazon Lex FAQ.

§detect_sentiment: Option<bool>

When set to true user utterances are sent to Amazon Comprehend for sentiment analysis. If you don't specify detectSentiment, the default is false.

§create_version: Option<bool>

When set to true a new numbered version of the bot is created. This is the same as calling the CreateBotVersion operation. If you don't specify createVersion, the default is false.

§tags: Option<Vec<Tag>>

A list of tags to add to the bot. You can only add tags when you create a bot, you can't use the PutBot operation to update the tags on a bot. To update tags, use the TagResource operation.

Implementations§

Source§

impl PutBotInput

Source

pub fn name(&self) -> Option<&str>

The name of the bot. The name is not case sensitive.

Source

pub fn description(&self) -> Option<&str>

A description of the bot.

Source

pub fn intents(&self) -> &[Intent]

An array of Intent objects. Each intent represents a command that a user can express. For example, a pizza ordering bot might support an OrderPizza intent. For more information, see how-it-works.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .intents.is_none().

Source

pub fn enable_model_improvements(&self) -> Option<bool>

Set to true to enable access to natural language understanding improvements.

When you set the enableModelImprovements parameter to true you can use the nluIntentConfidenceThreshold parameter to configure confidence scores. For more information, see Confidence Scores.

You can only set the enableModelImprovements parameter in certain Regions. If you set the parameter to true, your bot has access to accuracy improvements.

The Regions where you can set the enableModelImprovements parameter to true are:

  • US East (N. Virginia) (us-east-1)

  • US West (Oregon) (us-west-2)

  • Asia Pacific (Sydney) (ap-southeast-2)

  • EU (Ireland) (eu-west-1)

In other Regions, the enableModelImprovements parameter is set to true by default. In these Regions setting the parameter to false throws a ValidationException exception.

Source

pub fn nlu_intent_confidence_threshold(&self) -> Option<f64>

Determines the threshold where Amazon Lex will insert the AMAZON.FallbackIntent, AMAZON.KendraSearchIntent, or both when returning alternative intents in a PostContent or PostText response. AMAZON.FallbackIntent and AMAZON.KendraSearchIntent are only inserted if they are configured for the bot.

You must set the enableModelImprovements parameter to true to use confidence scores in the following regions.

  • US East (N. Virginia) (us-east-1)

  • US West (Oregon) (us-west-2)

  • Asia Pacific (Sydney) (ap-southeast-2)

  • EU (Ireland) (eu-west-1)

In other Regions, the enableModelImprovements parameter is set to true by default.

For example, suppose a bot is configured with the confidence threshold of 0.80 and the AMAZON.FallbackIntent. Amazon Lex returns three alternative intents with the following confidence scores: IntentA (0.70), IntentB (0.60), IntentC (0.50). The response from the PostText operation would be:

  • AMAZON.FallbackIntent

  • IntentA

  • IntentB

  • IntentC

Source

pub fn clarification_prompt(&self) -> Option<&Prompt>

When Amazon Lex doesn't understand the user's intent, it uses this message to get clarification. To specify how many times Amazon Lex should repeat the clarification prompt, use the maxAttempts field. If Amazon Lex still doesn't understand, it sends the message in the abortStatement field.

When you create a clarification prompt, make sure that it suggests the correct response from the user. for example, for a bot that orders pizza and drinks, you might create this clarification prompt: "What would you like to do? You can say 'Order a pizza' or 'Order a drink.'"

If you have defined a fallback intent, it will be invoked if the clarification prompt is repeated the number of times defined in the maxAttempts field. For more information, see AMAZON.FallbackIntent.

If you don't define a clarification prompt, at runtime Amazon Lex will return a 400 Bad Request exception in three cases:

  • Follow-up prompt - When the user responds to a follow-up prompt but does not provide an intent. For example, in response to a follow-up prompt that says "Would you like anything else today?" the user says "Yes." Amazon Lex will return a 400 Bad Request exception because it does not have a clarification prompt to send to the user to get an intent.

  • Lambda function - When using a Lambda function, you return an ElicitIntent dialog type. Since Amazon Lex does not have a clarification prompt to get an intent from the user, it returns a 400 Bad Request exception.

  • PutSession operation - When using the PutSession operation, you send an ElicitIntent dialog type. Since Amazon Lex does not have a clarification prompt to get an intent from the user, it returns a 400 Bad Request exception.

Source

pub fn abort_statement(&self) -> Option<&Statement>

When Amazon Lex can't understand the user's input in context, it tries to elicit the information a few times. After that, Amazon Lex sends the message defined in abortStatement to the user, and then cancels the conversation. To set the number of retries, use the valueElicitationPrompt field for the slot type.

For example, in a pizza ordering bot, Amazon Lex might ask a user "What type of crust would you like?" If the user's response is not one of the expected responses (for example, "thin crust, "deep dish," etc.), Amazon Lex tries to elicit a correct response a few more times.

For example, in a pizza ordering application, OrderPizza might be one of the intents. This intent might require the CrustType slot. You specify the valueElicitationPrompt field when you create the CrustType slot.

If you have defined a fallback intent the cancel statement will not be sent to the user, the fallback intent is used instead. For more information, see AMAZON.FallbackIntent.

Source

pub fn idle_session_ttl_in_seconds(&self) -> Option<i32>

The maximum time in seconds that Amazon Lex retains the data gathered in a conversation.

A user interaction session remains active for the amount of time specified. If no conversation occurs during this time, the session expires and Amazon Lex deletes any data provided before the timeout.

For example, suppose that a user chooses the OrderPizza intent, but gets sidetracked halfway through placing an order. If the user doesn't complete the order within the specified time, Amazon Lex discards the slot information that it gathered, and the user must start over.

If you don't include the idleSessionTTLInSeconds element in a PutBot operation request, Amazon Lex uses the default value. This is also true if the request replaces an existing bot.

The default is 300 seconds (5 minutes).

Source

pub fn voice_id(&self) -> Option<&str>

The Amazon Polly voice ID that you want Amazon Lex to use for voice interactions with the user. The locale configured for the voice must match the locale of the bot. For more information, see Voices in Amazon Polly in the Amazon Polly Developer Guide.

Source

pub fn checksum(&self) -> Option<&str>

Identifies a specific revision of the $LATEST version.

When you create a new bot, leave the checksum field blank. If you specify a checksum you get a BadRequestException exception.

When you want to update a bot, set the checksum field to the checksum of the most recent revision of the $LATEST version. If you don't specify the checksum field, or if the checksum does not match the $LATEST version, you get a PreconditionFailedException exception.

Source

pub fn process_behavior(&self) -> Option<&ProcessBehavior>

If you set the processBehavior element to BUILD, Amazon Lex builds the bot so that it can be run. If you set the element to SAVE Amazon Lex saves the bot, but doesn't build it.

If you don't specify this value, the default value is BUILD.

Source

pub fn locale(&self) -> Option<&Locale>

Specifies the target locale for the bot. Any intent used in the bot must be compatible with the locale of the bot.

The default is en-US.

Source

pub fn child_directed(&self) -> Option<bool>

For each Amazon Lex bot created with the Amazon Lex Model Building Service, you must specify whether your use of Amazon Lex is related to a website, program, or other application that is directed or targeted, in whole or in part, to children under age 13 and subject to the Children's Online Privacy Protection Act (COPPA) by specifying true or false in the childDirected field. By specifying true in the childDirected field, you confirm that your use of Amazon Lex is related to a website, program, or other application that is directed or targeted, in whole or in part, to children under age 13 and subject to COPPA. By specifying false in the childDirected field, you confirm that your use of Amazon Lex is not related to a website, program, or other application that is directed or targeted, in whole or in part, to children under age 13 and subject to COPPA. You may not specify a default value for the childDirected field that does not accurately reflect whether your use of Amazon Lex is related to a website, program, or other application that is directed or targeted, in whole or in part, to children under age 13 and subject to COPPA.

If your use of Amazon Lex relates to a website, program, or other application that is directed in whole or in part, to children under age 13, you must obtain any required verifiable parental consent under COPPA. For information regarding the use of Amazon Lex in connection with websites, programs, or other applications that are directed or targeted, in whole or in part, to children under age 13, see the Amazon Lex FAQ.

Source

pub fn detect_sentiment(&self) -> Option<bool>

When set to true user utterances are sent to Amazon Comprehend for sentiment analysis. If you don't specify detectSentiment, the default is false.

Source

pub fn create_version(&self) -> Option<bool>

When set to true a new numbered version of the bot is created. This is the same as calling the CreateBotVersion operation. If you don't specify createVersion, the default is false.

Source

pub fn tags(&self) -> &[Tag]

A list of tags to add to the bot. You can only add tags when you create a bot, you can't use the PutBot operation to update the tags on a bot. To update tags, use the TagResource operation.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tags.is_none().

Source§

impl PutBotInput

Source

pub fn builder() -> PutBotInputBuilder

Creates a new builder-style object to manufacture PutBotInput.

Trait Implementations§

Source§

impl Clone for PutBotInput

Source§

fn clone(&self) -> PutBotInput

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for PutBotInput

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for PutBotInput

Source§

fn eq(&self, other: &PutBotInput) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for PutBotInput

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more