Struct aws_sdk_glue::types::JobRun

source ·
#[non_exhaustive]
pub struct JobRun {
Show 24 fields pub id: Option<String>, pub attempt: i32, pub previous_run_id: Option<String>, pub trigger_name: Option<String>, pub job_name: Option<String>, pub started_on: Option<DateTime>, pub last_modified_on: Option<DateTime>, pub completed_on: Option<DateTime>, pub job_run_state: Option<JobRunState>, pub arguments: Option<HashMap<String, String>>, pub error_message: Option<String>, pub predecessor_runs: Option<Vec<Predecessor>>, pub allocated_capacity: i32, pub execution_time: i32, pub timeout: Option<i32>, pub max_capacity: Option<f64>, pub worker_type: Option<WorkerType>, pub number_of_workers: Option<i32>, pub security_configuration: Option<String>, pub log_group_name: Option<String>, pub notification_property: Option<NotificationProperty>, pub glue_version: Option<String>, pub dpu_seconds: Option<f64>, pub execution_class: Option<ExecutionClass>,
}
Expand description

Contains information about a job run.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§id: Option<String>

The ID of this job run.

§attempt: i32

The number of the attempt to run this job.

§previous_run_id: Option<String>

The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action.

§trigger_name: Option<String>

The name of the trigger that started this job run.

§job_name: Option<String>

The name of the job definition being used in this run.

§started_on: Option<DateTime>

The date and time at which this job run was started.

§last_modified_on: Option<DateTime>

The last time that this job run was modified.

§completed_on: Option<DateTime>

The date and time that this job run completed.

§job_run_state: Option<JobRunState>

The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see Glue Job Run Statuses.

§arguments: Option<HashMap<String, String>>

The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself.

You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs, see the Special Parameters Used by Glue topic in the developer guide.

For information about the arguments you can provide to this field when configuring Ray jobs, see Using job parameters in Ray jobs in the developer guide.

§error_message: Option<String>

An error message associated with this job run.

§predecessor_runs: Option<Vec<Predecessor>>

A list of predecessors to this job run.

§allocated_capacity: i32
👎Deprecated: This property is deprecated, use MaxCapacity instead.

This field is deprecated. Use MaxCapacity instead.

The number of Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.

§execution_time: i32

The amount of time (in seconds) that the job run consumed resources.

§timeout: Option<i32>

The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. This value overrides the timeout value set in the parent job.

Streaming jobs do not have a timeout. The default for non-streaming jobs is 2,880 minutes (48 hours).

§max_capacity: Option<f64>

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.

For Glue version 2.0+ jobs, you cannot specify a Maximum capacity. Instead, you should specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

  • When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.

  • When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

§worker_type: Option<WorkerType>

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

  • For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.

  • For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.

  • For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

  • For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X worker type.

  • For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.

  • For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

§number_of_workers: Option<i32>

The number of workers of a defined workerType that are allocated when a job runs.

§security_configuration: Option<String>

The name of the SecurityConfiguration structure to be used with this job run.

§log_group_name: Option<String>

The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using KMS. This name can be /aws-glue/jobs/, in which case the default encryption is NONE. If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/), then that security configuration is used to encrypt the log group.

§notification_property: Option<NotificationProperty>

Specifies configuration properties of a job run notification.

§glue_version: Option<String>

In Spark jobs, GlueVersion determines the versions of Apache Spark and Python that Glue available in a job. The Python version indicates the version supported for jobs of type Spark.

Ray jobs should set GlueVersion to 4.0 or greater. However, the versions of Ray, Python and additional libraries available in your Ray job are determined by the Runtime parameter of the Job command.

For more information about the available Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide.

Jobs that are created without specifying a Glue version default to Glue 0.9.

§dpu_seconds: Option<f64>

This field populates only for Auto Scaling job runs, and represents the total time each executor ran during the lifecycle of a job run in seconds, multiplied by a DPU factor (1 for G.1X, 2 for G.2X, or 0.25 for G.025X workers). This value may be different than the executionEngineRuntime * MaxCapacity as in the case of Auto Scaling jobs, as the number of executors running at a given time may be less than the MaxCapacity. Therefore, it is possible that the value of DPUSeconds is less than executionEngineRuntime * MaxCapacity.

§execution_class: Option<ExecutionClass>

Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.

Only jobs with Glue version 3.0 and above and command type glueetl will be allowed to set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

Implementations§

source§

impl JobRun

source

pub fn id(&self) -> Option<&str>

The ID of this job run.

source

pub fn attempt(&self) -> i32

The number of the attempt to run this job.

source

pub fn previous_run_id(&self) -> Option<&str>

The ID of the previous run of this job. For example, the JobRunId specified in the StartJobRun action.

source

pub fn trigger_name(&self) -> Option<&str>

The name of the trigger that started this job run.

source

pub fn job_name(&self) -> Option<&str>

The name of the job definition being used in this run.

source

pub fn started_on(&self) -> Option<&DateTime>

The date and time at which this job run was started.

source

pub fn last_modified_on(&self) -> Option<&DateTime>

The last time that this job run was modified.

source

pub fn completed_on(&self) -> Option<&DateTime>

The date and time that this job run completed.

source

pub fn job_run_state(&self) -> Option<&JobRunState>

The current state of the job run. For more information about the statuses of jobs that have terminated abnormally, see Glue Job Run Statuses.

source

pub fn arguments(&self) -> Option<&HashMap<String, String>>

The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself.

You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs, see the Special Parameters Used by Glue topic in the developer guide.

For information about the arguments you can provide to this field when configuring Ray jobs, see Using job parameters in Ray jobs in the developer guide.

source

pub fn error_message(&self) -> Option<&str>

An error message associated with this job run.

source

pub fn predecessor_runs(&self) -> &[Predecessor]

A list of predecessors to this job run.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .predecessor_runs.is_none().

source

pub fn allocated_capacity(&self) -> i32

👎Deprecated: This property is deprecated, use MaxCapacity instead.

This field is deprecated. Use MaxCapacity instead.

The number of Glue data processing units (DPUs) allocated to this JobRun. From 2 to 100 DPUs can be allocated; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.

source

pub fn execution_time(&self) -> i32

The amount of time (in seconds) that the job run consumed resources.

source

pub fn timeout(&self) -> Option<i32>

The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. This value overrides the timeout value set in the parent job.

Streaming jobs do not have a timeout. The default for non-streaming jobs is 2,880 minutes (48 hours).

source

pub fn max_capacity(&self) -> Option<f64>

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.

For Glue version 2.0+ jobs, you cannot specify a Maximum capacity. Instead, you should specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

  • When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.

  • When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

source

pub fn worker_type(&self) -> Option<&WorkerType>

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

  • For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.

  • For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.

  • For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

  • For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X worker type.

  • For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.

  • For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

source

pub fn number_of_workers(&self) -> Option<i32>

The number of workers of a defined workerType that are allocated when a job runs.

source

pub fn security_configuration(&self) -> Option<&str>

The name of the SecurityConfiguration structure to be used with this job run.

source

pub fn log_group_name(&self) -> Option<&str>

The name of the log group for secure logging that can be server-side encrypted in Amazon CloudWatch using KMS. This name can be /aws-glue/jobs/, in which case the default encryption is NONE. If you add a role name and SecurityConfiguration name (in other words, /aws-glue/jobs-yourRoleName-yourSecurityConfigurationName/), then that security configuration is used to encrypt the log group.

source

pub fn notification_property(&self) -> Option<&NotificationProperty>

Specifies configuration properties of a job run notification.

source

pub fn glue_version(&self) -> Option<&str>

In Spark jobs, GlueVersion determines the versions of Apache Spark and Python that Glue available in a job. The Python version indicates the version supported for jobs of type Spark.

Ray jobs should set GlueVersion to 4.0 or greater. However, the versions of Ray, Python and additional libraries available in your Ray job are determined by the Runtime parameter of the Job command.

For more information about the available Glue versions and corresponding Spark and Python versions, see Glue version in the developer guide.

Jobs that are created without specifying a Glue version default to Glue 0.9.

source

pub fn dpu_seconds(&self) -> Option<f64>

This field populates only for Auto Scaling job runs, and represents the total time each executor ran during the lifecycle of a job run in seconds, multiplied by a DPU factor (1 for G.1X, 2 for G.2X, or 0.25 for G.025X workers). This value may be different than the executionEngineRuntime * MaxCapacity as in the case of Auto Scaling jobs, as the number of executors running at a given time may be less than the MaxCapacity. Therefore, it is possible that the value of DPUSeconds is less than executionEngineRuntime * MaxCapacity.

source

pub fn execution_class(&self) -> Option<&ExecutionClass>

Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.

Only jobs with Glue version 3.0 and above and command type glueetl will be allowed to set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

source§

impl JobRun

source

pub fn builder() -> JobRunBuilder

Creates a new builder-style object to manufacture JobRun.

Trait Implementations§

source§

impl Clone for JobRun

source§

fn clone(&self) -> JobRun

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for JobRun

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq for JobRun

source§

fn eq(&self, other: &JobRun) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for JobRun

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<Unshared, Shared> IntoShared<Shared> for Unsharedwhere Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more