#[non_exhaustive]pub struct FindMatchesMetrics {
pub area_under_pr_curve: Option<f64>,
pub precision: Option<f64>,
pub recall: Option<f64>,
pub f1: Option<f64>,
pub confusion_matrix: Option<ConfusionMatrix>,
pub column_importances: Option<Vec<ColumnImportance>>,
}
Expand description
The evaluation metrics for the find matches algorithm. The quality of your machine learning transform is measured by getting your transform to predict some matches and comparing the results to known matches from the same dataset. The quality metrics are based on a subset of your data, so they are not precise.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.area_under_pr_curve: Option<f64>
The area under the precision/recall curve (AUPRC) is a single number measuring the overall quality of the transform, that is independent of the choice made for precision vs. recall. Higher values indicate that you have a more attractive precision vs. recall tradeoff.
For more information, see Precision and recall in Wikipedia.
precision: Option<f64>
The precision metric indicates when often your transform is correct when it predicts a match. Specifically, it measures how well the transform finds true positives from the total true positives possible.
For more information, see Precision and recall in Wikipedia.
recall: Option<f64>
The recall metric indicates that for an actual match, how often your transform predicts the match. Specifically, it measures how well the transform finds true positives from the total records in the source data.
For more information, see Precision and recall in Wikipedia.
f1: Option<f64>
The maximum F1 metric indicates the transform's accuracy between 0 and 1, where 1 is the best accuracy.
For more information, see F1 score in Wikipedia.
confusion_matrix: Option<ConfusionMatrix>
The confusion matrix shows you what your transform is predicting accurately and what types of errors it is making.
For more information, see Confusion matrix in Wikipedia.
column_importances: Option<Vec<ColumnImportance>>
A list of ColumnImportance
structures containing column importance metrics, sorted in order of descending importance.
Implementations§
Source§impl FindMatchesMetrics
impl FindMatchesMetrics
Sourcepub fn area_under_pr_curve(&self) -> Option<f64>
pub fn area_under_pr_curve(&self) -> Option<f64>
The area under the precision/recall curve (AUPRC) is a single number measuring the overall quality of the transform, that is independent of the choice made for precision vs. recall. Higher values indicate that you have a more attractive precision vs. recall tradeoff.
For more information, see Precision and recall in Wikipedia.
Sourcepub fn precision(&self) -> Option<f64>
pub fn precision(&self) -> Option<f64>
The precision metric indicates when often your transform is correct when it predicts a match. Specifically, it measures how well the transform finds true positives from the total true positives possible.
For more information, see Precision and recall in Wikipedia.
Sourcepub fn recall(&self) -> Option<f64>
pub fn recall(&self) -> Option<f64>
The recall metric indicates that for an actual match, how often your transform predicts the match. Specifically, it measures how well the transform finds true positives from the total records in the source data.
For more information, see Precision and recall in Wikipedia.
Sourcepub fn f1(&self) -> Option<f64>
pub fn f1(&self) -> Option<f64>
The maximum F1 metric indicates the transform's accuracy between 0 and 1, where 1 is the best accuracy.
For more information, see F1 score in Wikipedia.
Sourcepub fn confusion_matrix(&self) -> Option<&ConfusionMatrix>
pub fn confusion_matrix(&self) -> Option<&ConfusionMatrix>
The confusion matrix shows you what your transform is predicting accurately and what types of errors it is making.
For more information, see Confusion matrix in Wikipedia.
Sourcepub fn column_importances(&self) -> &[ColumnImportance]
pub fn column_importances(&self) -> &[ColumnImportance]
A list of ColumnImportance
structures containing column importance metrics, sorted in order of descending importance.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .column_importances.is_none()
.
Source§impl FindMatchesMetrics
impl FindMatchesMetrics
Sourcepub fn builder() -> FindMatchesMetricsBuilder
pub fn builder() -> FindMatchesMetricsBuilder
Creates a new builder-style object to manufacture FindMatchesMetrics
.
Trait Implementations§
Source§impl Clone for FindMatchesMetrics
impl Clone for FindMatchesMetrics
Source§fn clone(&self) -> FindMatchesMetrics
fn clone(&self) -> FindMatchesMetrics
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for FindMatchesMetrics
impl Debug for FindMatchesMetrics
Source§impl PartialEq for FindMatchesMetrics
impl PartialEq for FindMatchesMetrics
impl StructuralPartialEq for FindMatchesMetrics
Auto Trait Implementations§
impl Freeze for FindMatchesMetrics
impl RefUnwindSafe for FindMatchesMetrics
impl Send for FindMatchesMetrics
impl Sync for FindMatchesMetrics
impl Unpin for FindMatchesMetrics
impl UnwindSafe for FindMatchesMetrics
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);