#[non_exhaustive]
pub struct StartJobRunInput { pub job_name: Option<String>, pub job_run_id: Option<String>, pub arguments: Option<HashMap<String, String>>, pub allocated_capacity: Option<i32>, pub timeout: Option<i32>, pub max_capacity: Option<f64>, pub security_configuration: Option<String>, pub notification_property: Option<NotificationProperty>, pub worker_type: Option<WorkerType>, pub number_of_workers: Option<i32>, pub execution_class: Option<ExecutionClass>, }

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§job_name: Option<String>

The name of the job definition to use.

§job_run_id: Option<String>

The ID of a previous JobRun to retry.

§arguments: Option<HashMap<String, String>>

The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself.

You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs, see the Special Parameters Used by Glue topic in the developer guide.

For information about the arguments you can provide to this field when configuring Ray jobs, see Using job parameters in Ray jobs in the developer guide.

§allocated_capacity: Option<i32>
👎Deprecated: This property is deprecated, use MaxCapacity instead.

This field is deprecated. Use MaxCapacity instead.

The number of Glue data processing units (DPUs) to allocate to this JobRun. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.

§timeout: Option<i32>

The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. This value overrides the timeout value set in the parent job.

Streaming jobs do not have a timeout. The default for non-streaming jobs is 2,880 minutes (48 hours).

§max_capacity: Option<f64>

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.

For Glue version 2.0+ jobs, you cannot specify a Maximum capacity. Instead, you should specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

  • When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.

  • When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

§security_configuration: Option<String>

The name of the SecurityConfiguration structure to be used with this job run.

§notification_property: Option<NotificationProperty>

Specifies configuration properties of a job run notification.

§worker_type: Option<WorkerType>

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

  • For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.

  • For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.

  • For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

  • For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X worker type.

  • For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.

  • For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

§number_of_workers: Option<i32>

The number of workers of a defined workerType that are allocated when a job runs.

§execution_class: Option<ExecutionClass>

Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.

Only jobs with Glue version 3.0 and above and command type glueetl will be allowed to set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

Implementations§

source§

impl StartJobRunInput

source

pub fn job_name(&self) -> Option<&str>

The name of the job definition to use.

source

pub fn job_run_id(&self) -> Option<&str>

The ID of a previous JobRun to retry.

source

pub fn arguments(&self) -> Option<&HashMap<String, String>>

The job arguments associated with this run. For this job run, they replace the default arguments set in the job definition itself.

You can specify arguments here that your own job-execution script consumes, as well as arguments that Glue itself consumes.

Job arguments may be logged. Do not pass plaintext secrets as arguments. Retrieve secrets from a Glue Connection, Secrets Manager or other secret management mechanism if you intend to keep them within the Job.

For information about how to specify and consume your own Job arguments, see the Calling Glue APIs in Python topic in the developer guide.

For information about the arguments you can provide to this field when configuring Spark jobs, see the Special Parameters Used by Glue topic in the developer guide.

For information about the arguments you can provide to this field when configuring Ray jobs, see Using job parameters in Ray jobs in the developer guide.

source

pub fn allocated_capacity(&self) -> Option<i32>

👎Deprecated: This property is deprecated, use MaxCapacity instead.

This field is deprecated. Use MaxCapacity instead.

The number of Glue data processing units (DPUs) to allocate to this JobRun. You can allocate a minimum of 2 DPUs; the default is 10. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.

source

pub fn timeout(&self) -> Option<i32>

The JobRun timeout in minutes. This is the maximum time that a job run can consume resources before it is terminated and enters TIMEOUT status. This value overrides the timeout value set in the parent job.

Streaming jobs do not have a timeout. The default for non-streaming jobs is 2,880 minutes (48 hours).

source

pub fn max_capacity(&self) -> Option<f64>

For Glue version 1.0 or earlier jobs, using the standard worker type, the number of Glue data processing units (DPUs) that can be allocated when this job runs. A DPU is a relative measure of processing power that consists of 4 vCPUs of compute capacity and 16 GB of memory. For more information, see the Glue pricing page.

For Glue version 2.0+ jobs, you cannot specify a Maximum capacity. Instead, you should specify a Worker type and the Number of workers.

Do not set MaxCapacity if using WorkerType and NumberOfWorkers.

The value that can be allocated for MaxCapacity depends on whether you are running a Python shell job, an Apache Spark ETL job, or an Apache Spark streaming ETL job:

  • When you specify a Python shell job (JobCommand.Name="pythonshell"), you can allocate either 0.0625 or 1 DPU. The default is 0.0625 DPU.

  • When you specify an Apache Spark ETL job (JobCommand.Name="glueetl") or Apache Spark streaming ETL job (JobCommand.Name="gluestreaming"), you can allocate from 2 to 100 DPUs. The default is 10 DPUs. This job type cannot have a fractional DPU allocation.

source

pub fn security_configuration(&self) -> Option<&str>

The name of the SecurityConfiguration structure to be used with this job run.

source

pub fn notification_property(&self) -> Option<&NotificationProperty>

Specifies configuration properties of a job run notification.

source

pub fn worker_type(&self) -> Option<&WorkerType>

The type of predefined worker that is allocated when a job runs. Accepts a value of G.1X, G.2X, G.4X, G.8X or G.025X for Spark jobs. Accepts the value Z.2X for Ray jobs.

  • For the G.1X worker type, each worker maps to 1 DPU (4 vCPUs, 16 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.

  • For the G.2X worker type, each worker maps to 2 DPU (8 vCPUs, 32 GB of memory) with 128GB disk (approximately 77GB free), and provides 1 executor per worker. We recommend this worker type for workloads such as data transforms, joins, and queries, to offers a scalable and cost effective way to run most jobs.

  • For the G.4X worker type, each worker maps to 4 DPU (16 vCPUs, 64 GB of memory) with 256GB disk (approximately 235GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs in the following Amazon Web Services Regions: US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

  • For the G.8X worker type, each worker maps to 8 DPU (32 vCPUs, 128 GB of memory) with 512GB disk (approximately 487GB free), and provides 1 executor per worker. We recommend this worker type for jobs whose workloads contain your most demanding transforms, aggregations, joins, and queries. This worker type is available only for Glue version 3.0 or later Spark ETL jobs, in the same Amazon Web Services Regions as supported for the G.4X worker type.

  • For the G.025X worker type, each worker maps to 0.25 DPU (2 vCPUs, 4 GB of memory) with 84GB disk (approximately 34GB free), and provides 1 executor per worker. We recommend this worker type for low volume streaming jobs. This worker type is only available for Glue version 3.0 streaming jobs.

  • For the Z.2X worker type, each worker maps to 2 M-DPU (8vCPUs, 64 GB of memory) with 128 GB disk (approximately 120GB free), and provides up to 8 Ray workers based on the autoscaler.

source

pub fn number_of_workers(&self) -> Option<i32>

The number of workers of a defined workerType that are allocated when a job runs.

source

pub fn execution_class(&self) -> Option<&ExecutionClass>

Indicates whether the job is run with a standard or flexible execution class. The standard execution-class is ideal for time-sensitive workloads that require fast job startup and dedicated resources.

The flexible execution class is appropriate for time-insensitive jobs whose start and completion times may vary.

Only jobs with Glue version 3.0 and above and command type glueetl will be allowed to set ExecutionClass to FLEX. The flexible execution class is available for Spark jobs.

source§

impl StartJobRunInput

source

pub fn builder() -> StartJobRunInputBuilder

Creates a new builder-style object to manufacture StartJobRunInput.

Trait Implementations§

source§

impl Clone for StartJobRunInput

source§

fn clone(&self) -> StartJobRunInput

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for StartJobRunInput

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq<StartJobRunInput> for StartJobRunInput

source§

fn eq(&self, other: &StartJobRunInput) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for StartJobRunInput

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for Twhere T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for Twhere T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for Twhere T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for Twhere U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same<T> for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for Twhere T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for Twhere U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for Twhere U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more