#[non_exhaustive]pub struct DescribePredictorOutputBuilder { /* private fields */ }
Expand description
A builder for DescribePredictorOutput
.
Implementations§
Source§impl DescribePredictorOutputBuilder
impl DescribePredictorOutputBuilder
Sourcepub fn predictor_arn(self, input: impl Into<String>) -> Self
pub fn predictor_arn(self, input: impl Into<String>) -> Self
The ARN of the predictor.
Sourcepub fn set_predictor_arn(self, input: Option<String>) -> Self
pub fn set_predictor_arn(self, input: Option<String>) -> Self
The ARN of the predictor.
Sourcepub fn get_predictor_arn(&self) -> &Option<String>
pub fn get_predictor_arn(&self) -> &Option<String>
The ARN of the predictor.
Sourcepub fn predictor_name(self, input: impl Into<String>) -> Self
pub fn predictor_name(self, input: impl Into<String>) -> Self
The name of the predictor.
Sourcepub fn set_predictor_name(self, input: Option<String>) -> Self
pub fn set_predictor_name(self, input: Option<String>) -> Self
The name of the predictor.
Sourcepub fn get_predictor_name(&self) -> &Option<String>
pub fn get_predictor_name(&self) -> &Option<String>
The name of the predictor.
Sourcepub fn algorithm_arn(self, input: impl Into<String>) -> Self
pub fn algorithm_arn(self, input: impl Into<String>) -> Self
The Amazon Resource Name (ARN) of the algorithm used for model training.
Sourcepub fn set_algorithm_arn(self, input: Option<String>) -> Self
pub fn set_algorithm_arn(self, input: Option<String>) -> Self
The Amazon Resource Name (ARN) of the algorithm used for model training.
Sourcepub fn get_algorithm_arn(&self) -> &Option<String>
pub fn get_algorithm_arn(&self) -> &Option<String>
The Amazon Resource Name (ARN) of the algorithm used for model training.
Sourcepub fn auto_ml_algorithm_arns(self, input: impl Into<String>) -> Self
pub fn auto_ml_algorithm_arns(self, input: impl Into<String>) -> Self
Appends an item to auto_ml_algorithm_arns
.
To override the contents of this collection use set_auto_ml_algorithm_arns
.
When PerformAutoML
is specified, the ARN of the chosen algorithm.
Sourcepub fn set_auto_ml_algorithm_arns(self, input: Option<Vec<String>>) -> Self
pub fn set_auto_ml_algorithm_arns(self, input: Option<Vec<String>>) -> Self
When PerformAutoML
is specified, the ARN of the chosen algorithm.
Sourcepub fn get_auto_ml_algorithm_arns(&self) -> &Option<Vec<String>>
pub fn get_auto_ml_algorithm_arns(&self) -> &Option<Vec<String>>
When PerformAutoML
is specified, the ARN of the chosen algorithm.
Sourcepub fn forecast_horizon(self, input: i32) -> Self
pub fn forecast_horizon(self, input: i32) -> Self
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
Sourcepub fn set_forecast_horizon(self, input: Option<i32>) -> Self
pub fn set_forecast_horizon(self, input: Option<i32>) -> Self
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
Sourcepub fn get_forecast_horizon(&self) -> &Option<i32>
pub fn get_forecast_horizon(&self) -> &Option<i32>
The number of time-steps of the forecast. The forecast horizon is also called the prediction length.
Sourcepub fn forecast_types(self, input: impl Into<String>) -> Self
pub fn forecast_types(self, input: impl Into<String>) -> Self
Appends an item to forecast_types
.
To override the contents of this collection use set_forecast_types
.
The forecast types used during predictor training. Default value is \["0.1","0.5","0.9"\]
Sourcepub fn set_forecast_types(self, input: Option<Vec<String>>) -> Self
pub fn set_forecast_types(self, input: Option<Vec<String>>) -> Self
The forecast types used during predictor training. Default value is \["0.1","0.5","0.9"\]
Sourcepub fn get_forecast_types(&self) -> &Option<Vec<String>>
pub fn get_forecast_types(&self) -> &Option<Vec<String>>
The forecast types used during predictor training. Default value is \["0.1","0.5","0.9"\]
Sourcepub fn perform_auto_ml(self, input: bool) -> Self
pub fn perform_auto_ml(self, input: bool) -> Self
Whether the predictor is set to perform AutoML.
Sourcepub fn set_perform_auto_ml(self, input: Option<bool>) -> Self
pub fn set_perform_auto_ml(self, input: Option<bool>) -> Self
Whether the predictor is set to perform AutoML.
Sourcepub fn get_perform_auto_ml(&self) -> &Option<bool>
pub fn get_perform_auto_ml(&self) -> &Option<bool>
Whether the predictor is set to perform AutoML.
Sourcepub fn auto_ml_override_strategy(self, input: AutoMlOverrideStrategy) -> Self
pub fn auto_ml_override_strategy(self, input: AutoMlOverrideStrategy) -> Self
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact Amazon Web Services Support or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the AutoML strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
Sourcepub fn set_auto_ml_override_strategy(
self,
input: Option<AutoMlOverrideStrategy>,
) -> Self
pub fn set_auto_ml_override_strategy( self, input: Option<AutoMlOverrideStrategy>, ) -> Self
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact Amazon Web Services Support or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the AutoML strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
Sourcepub fn get_auto_ml_override_strategy(&self) -> &Option<AutoMlOverrideStrategy>
pub fn get_auto_ml_override_strategy(&self) -> &Option<AutoMlOverrideStrategy>
The LatencyOptimized
AutoML override strategy is only available in private beta. Contact Amazon Web Services Support or your account manager to learn more about access privileges.
The AutoML strategy used to train the predictor. Unless LatencyOptimized
is specified, the AutoML strategy optimizes predictor accuracy.
This parameter is only valid for predictors trained using AutoML.
Sourcepub fn perform_hpo(self, input: bool) -> Self
pub fn perform_hpo(self, input: bool) -> Self
Whether the predictor is set to perform hyperparameter optimization (HPO).
Sourcepub fn set_perform_hpo(self, input: Option<bool>) -> Self
pub fn set_perform_hpo(self, input: Option<bool>) -> Self
Whether the predictor is set to perform hyperparameter optimization (HPO).
Sourcepub fn get_perform_hpo(&self) -> &Option<bool>
pub fn get_perform_hpo(&self) -> &Option<bool>
Whether the predictor is set to perform hyperparameter optimization (HPO).
Sourcepub fn training_parameters(
self,
k: impl Into<String>,
v: impl Into<String>,
) -> Self
pub fn training_parameters( self, k: impl Into<String>, v: impl Into<String>, ) -> Self
Adds a key-value pair to training_parameters
.
To override the contents of this collection use set_training_parameters
.
The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes
.
Sourcepub fn set_training_parameters(
self,
input: Option<HashMap<String, String>>,
) -> Self
pub fn set_training_parameters( self, input: Option<HashMap<String, String>>, ) -> Self
The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes
.
Sourcepub fn get_training_parameters(&self) -> &Option<HashMap<String, String>>
pub fn get_training_parameters(&self) -> &Option<HashMap<String, String>>
The default training parameters or overrides selected during model training. When running AutoML or choosing HPO with CNN-QR or DeepAR+, the optimized values for the chosen hyperparameters are returned. For more information, see aws-forecast-choosing-recipes
.
Sourcepub fn evaluation_parameters(self, input: EvaluationParameters) -> Self
pub fn evaluation_parameters(self, input: EvaluationParameters) -> Self
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
Sourcepub fn set_evaluation_parameters(
self,
input: Option<EvaluationParameters>,
) -> Self
pub fn set_evaluation_parameters( self, input: Option<EvaluationParameters>, ) -> Self
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
Sourcepub fn get_evaluation_parameters(&self) -> &Option<EvaluationParameters>
pub fn get_evaluation_parameters(&self) -> &Option<EvaluationParameters>
Used to override the default evaluation parameters of the specified algorithm. Amazon Forecast evaluates a predictor by splitting a dataset into training data and testing data. The evaluation parameters define how to perform the split and the number of iterations.
Sourcepub fn hpo_config(self, input: HyperParameterTuningJobConfig) -> Self
pub fn hpo_config(self, input: HyperParameterTuningJobConfig) -> Self
The hyperparameter override values for the algorithm.
Sourcepub fn set_hpo_config(
self,
input: Option<HyperParameterTuningJobConfig>,
) -> Self
pub fn set_hpo_config( self, input: Option<HyperParameterTuningJobConfig>, ) -> Self
The hyperparameter override values for the algorithm.
Sourcepub fn get_hpo_config(&self) -> &Option<HyperParameterTuningJobConfig>
pub fn get_hpo_config(&self) -> &Option<HyperParameterTuningJobConfig>
The hyperparameter override values for the algorithm.
Sourcepub fn input_data_config(self, input: InputDataConfig) -> Self
pub fn input_data_config(self, input: InputDataConfig) -> Self
Describes the dataset group that contains the data to use to train the predictor.
Sourcepub fn set_input_data_config(self, input: Option<InputDataConfig>) -> Self
pub fn set_input_data_config(self, input: Option<InputDataConfig>) -> Self
Describes the dataset group that contains the data to use to train the predictor.
Sourcepub fn get_input_data_config(&self) -> &Option<InputDataConfig>
pub fn get_input_data_config(&self) -> &Option<InputDataConfig>
Describes the dataset group that contains the data to use to train the predictor.
Sourcepub fn featurization_config(self, input: FeaturizationConfig) -> Self
pub fn featurization_config(self, input: FeaturizationConfig) -> Self
The featurization configuration.
Sourcepub fn set_featurization_config(
self,
input: Option<FeaturizationConfig>,
) -> Self
pub fn set_featurization_config( self, input: Option<FeaturizationConfig>, ) -> Self
The featurization configuration.
Sourcepub fn get_featurization_config(&self) -> &Option<FeaturizationConfig>
pub fn get_featurization_config(&self) -> &Option<FeaturizationConfig>
The featurization configuration.
Sourcepub fn encryption_config(self, input: EncryptionConfig) -> Self
pub fn encryption_config(self, input: EncryptionConfig) -> Self
An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
Sourcepub fn set_encryption_config(self, input: Option<EncryptionConfig>) -> Self
pub fn set_encryption_config(self, input: Option<EncryptionConfig>) -> Self
An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
Sourcepub fn get_encryption_config(&self) -> &Option<EncryptionConfig>
pub fn get_encryption_config(&self) -> &Option<EncryptionConfig>
An Key Management Service (KMS) key and the Identity and Access Management (IAM) role that Amazon Forecast can assume to access the key.
Sourcepub fn predictor_execution_details(
self,
input: PredictorExecutionDetails,
) -> Self
pub fn predictor_execution_details( self, input: PredictorExecutionDetails, ) -> Self
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
Sourcepub fn set_predictor_execution_details(
self,
input: Option<PredictorExecutionDetails>,
) -> Self
pub fn set_predictor_execution_details( self, input: Option<PredictorExecutionDetails>, ) -> Self
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
Sourcepub fn get_predictor_execution_details(
&self,
) -> &Option<PredictorExecutionDetails>
pub fn get_predictor_execution_details( &self, ) -> &Option<PredictorExecutionDetails>
Details on the the status and results of the backtests performed to evaluate the accuracy of the predictor. You specify the number of backtests to perform when you call the operation.
Sourcepub fn estimated_time_remaining_in_minutes(self, input: i64) -> Self
pub fn estimated_time_remaining_in_minutes(self, input: i64) -> Self
The estimated time remaining in minutes for the predictor training job to complete.
Sourcepub fn set_estimated_time_remaining_in_minutes(self, input: Option<i64>) -> Self
pub fn set_estimated_time_remaining_in_minutes(self, input: Option<i64>) -> Self
The estimated time remaining in minutes for the predictor training job to complete.
Sourcepub fn get_estimated_time_remaining_in_minutes(&self) -> &Option<i64>
pub fn get_estimated_time_remaining_in_minutes(&self) -> &Option<i64>
The estimated time remaining in minutes for the predictor training job to complete.
Sourcepub fn is_auto_predictor(self, input: bool) -> Self
pub fn is_auto_predictor(self, input: bool) -> Self
Whether the predictor was created with CreateAutoPredictor
.
Sourcepub fn set_is_auto_predictor(self, input: Option<bool>) -> Self
pub fn set_is_auto_predictor(self, input: Option<bool>) -> Self
Whether the predictor was created with CreateAutoPredictor
.
Sourcepub fn get_is_auto_predictor(&self) -> &Option<bool>
pub fn get_is_auto_predictor(&self) -> &Option<bool>
Whether the predictor was created with CreateAutoPredictor
.
Sourcepub fn dataset_import_job_arns(self, input: impl Into<String>) -> Self
pub fn dataset_import_job_arns(self, input: impl Into<String>) -> Self
Appends an item to dataset_import_job_arns
.
To override the contents of this collection use set_dataset_import_job_arns
.
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
Sourcepub fn set_dataset_import_job_arns(self, input: Option<Vec<String>>) -> Self
pub fn set_dataset_import_job_arns(self, input: Option<Vec<String>>) -> Self
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
Sourcepub fn get_dataset_import_job_arns(&self) -> &Option<Vec<String>>
pub fn get_dataset_import_job_arns(&self) -> &Option<Vec<String>>
An array of the ARNs of the dataset import jobs used to import training data for the predictor.
Sourcepub fn status(self, input: impl Into<String>) -> Self
pub fn status(self, input: impl Into<String>) -> Self
The status of the predictor. States include:
-
ACTIVE
-
CREATE_PENDING
,CREATE_IN_PROGRESS
,CREATE_FAILED
-
DELETE_PENDING
,DELETE_IN_PROGRESS
,DELETE_FAILED
-
CREATE_STOPPING
,CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a forecast.
Sourcepub fn set_status(self, input: Option<String>) -> Self
pub fn set_status(self, input: Option<String>) -> Self
The status of the predictor. States include:
-
ACTIVE
-
CREATE_PENDING
,CREATE_IN_PROGRESS
,CREATE_FAILED
-
DELETE_PENDING
,DELETE_IN_PROGRESS
,DELETE_FAILED
-
CREATE_STOPPING
,CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a forecast.
Sourcepub fn get_status(&self) -> &Option<String>
pub fn get_status(&self) -> &Option<String>
The status of the predictor. States include:
-
ACTIVE
-
CREATE_PENDING
,CREATE_IN_PROGRESS
,CREATE_FAILED
-
DELETE_PENDING
,DELETE_IN_PROGRESS
,DELETE_FAILED
-
CREATE_STOPPING
,CREATE_STOPPED
The Status
of the predictor must be ACTIVE
before you can use the predictor to create a forecast.
Sourcepub fn message(self, input: impl Into<String>) -> Self
pub fn message(self, input: impl Into<String>) -> Self
If an error occurred, an informational message about the error.
Sourcepub fn set_message(self, input: Option<String>) -> Self
pub fn set_message(self, input: Option<String>) -> Self
If an error occurred, an informational message about the error.
Sourcepub fn get_message(&self) -> &Option<String>
pub fn get_message(&self) -> &Option<String>
If an error occurred, an informational message about the error.
Sourcepub fn creation_time(self, input: DateTime) -> Self
pub fn creation_time(self, input: DateTime) -> Self
When the model training task was created.
Sourcepub fn set_creation_time(self, input: Option<DateTime>) -> Self
pub fn set_creation_time(self, input: Option<DateTime>) -> Self
When the model training task was created.
Sourcepub fn get_creation_time(&self) -> &Option<DateTime>
pub fn get_creation_time(&self) -> &Option<DateTime>
When the model training task was created.
Sourcepub fn last_modification_time(self, input: DateTime) -> Self
pub fn last_modification_time(self, input: DateTime) -> Self
The last time the resource was modified. The timestamp depends on the status of the job:
-
CREATE_PENDING
- TheCreationTime
. -
CREATE_IN_PROGRESS
- The current timestamp. -
CREATE_STOPPING
- The current timestamp. -
CREATE_STOPPED
- When the job stopped. -
ACTIVE
orCREATE_FAILED
- When the job finished or failed.
Sourcepub fn set_last_modification_time(self, input: Option<DateTime>) -> Self
pub fn set_last_modification_time(self, input: Option<DateTime>) -> Self
The last time the resource was modified. The timestamp depends on the status of the job:
-
CREATE_PENDING
- TheCreationTime
. -
CREATE_IN_PROGRESS
- The current timestamp. -
CREATE_STOPPING
- The current timestamp. -
CREATE_STOPPED
- When the job stopped. -
ACTIVE
orCREATE_FAILED
- When the job finished or failed.
Sourcepub fn get_last_modification_time(&self) -> &Option<DateTime>
pub fn get_last_modification_time(&self) -> &Option<DateTime>
The last time the resource was modified. The timestamp depends on the status of the job:
-
CREATE_PENDING
- TheCreationTime
. -
CREATE_IN_PROGRESS
- The current timestamp. -
CREATE_STOPPING
- The current timestamp. -
CREATE_STOPPED
- When the job stopped. -
ACTIVE
orCREATE_FAILED
- When the job finished or failed.
Sourcepub fn optimization_metric(self, input: OptimizationMetric) -> Self
pub fn optimization_metric(self, input: OptimizationMetric) -> Self
The accuracy metric used to optimize the predictor.
Sourcepub fn set_optimization_metric(self, input: Option<OptimizationMetric>) -> Self
pub fn set_optimization_metric(self, input: Option<OptimizationMetric>) -> Self
The accuracy metric used to optimize the predictor.
Sourcepub fn get_optimization_metric(&self) -> &Option<OptimizationMetric>
pub fn get_optimization_metric(&self) -> &Option<OptimizationMetric>
The accuracy metric used to optimize the predictor.
Sourcepub fn build(self) -> DescribePredictorOutput
pub fn build(self) -> DescribePredictorOutput
Consumes the builder and constructs a DescribePredictorOutput
.
Trait Implementations§
Source§impl Clone for DescribePredictorOutputBuilder
impl Clone for DescribePredictorOutputBuilder
Source§fn clone(&self) -> DescribePredictorOutputBuilder
fn clone(&self) -> DescribePredictorOutputBuilder
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Default for DescribePredictorOutputBuilder
impl Default for DescribePredictorOutputBuilder
Source§fn default() -> DescribePredictorOutputBuilder
fn default() -> DescribePredictorOutputBuilder
Source§impl PartialEq for DescribePredictorOutputBuilder
impl PartialEq for DescribePredictorOutputBuilder
Source§fn eq(&self, other: &DescribePredictorOutputBuilder) -> bool
fn eq(&self, other: &DescribePredictorOutputBuilder) -> bool
self
and other
values to be equal, and is used by ==
.impl StructuralPartialEq for DescribePredictorOutputBuilder
Auto Trait Implementations§
impl Freeze for DescribePredictorOutputBuilder
impl RefUnwindSafe for DescribePredictorOutputBuilder
impl Send for DescribePredictorOutputBuilder
impl Sync for DescribePredictorOutputBuilder
impl Unpin for DescribePredictorOutputBuilder
impl UnwindSafe for DescribePredictorOutputBuilder
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);