#[non_exhaustive]pub struct CreateForecastInput {
pub forecast_name: Option<String>,
pub predictor_arn: Option<String>,
pub forecast_types: Option<Vec<String>>,
pub tags: Option<Vec<Tag>>,
pub time_series_selector: Option<TimeSeriesSelector>,
}
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.forecast_name: Option<String>
A name for the forecast.
predictor_arn: Option<String>
The Amazon Resource Name (ARN) of the predictor to use to generate the forecast.
forecast_types: Option<Vec<String>>
The quantiles at which probabilistic forecasts are generated. You can currently specify up to 5 quantiles per forecast. Accepted values include 0.01 to 0.99
(increments of .01 only) and mean
. The mean forecast is different from the median (0.50) when the distribution is not symmetric (for example, Beta and Negative Binomial).
The default quantiles are the quantiles you specified during predictor creation. If you didn't specify quantiles, the default values are \["0.1", "0.5", "0.9"\]
.
The optional metadata that you apply to the forecast to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:
-
Maximum number of tags per resource - 50.
-
For each resource, each tag key must be unique, and each tag key can have only one value.
-
Maximum key length - 128 Unicode characters in UTF-8.
-
Maximum value length - 256 Unicode characters in UTF-8.
-
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
-
Tag keys and values are case sensitive.
-
Do not use
aws:
,AWS:
, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value hasaws
as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix ofaws
do not count against your tags per resource limit.
time_series_selector: Option<TimeSeriesSelector>
Defines the set of time series that are used to create the forecasts in a TimeSeriesIdentifiers
object.
The TimeSeriesIdentifiers
object needs the following information:
-
DataSource
-
Format
-
Schema
Implementations§
Source§impl CreateForecastInput
impl CreateForecastInput
Sourcepub fn forecast_name(&self) -> Option<&str>
pub fn forecast_name(&self) -> Option<&str>
A name for the forecast.
Sourcepub fn predictor_arn(&self) -> Option<&str>
pub fn predictor_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) of the predictor to use to generate the forecast.
Sourcepub fn forecast_types(&self) -> &[String]
pub fn forecast_types(&self) -> &[String]
The quantiles at which probabilistic forecasts are generated. You can currently specify up to 5 quantiles per forecast. Accepted values include 0.01 to 0.99
(increments of .01 only) and mean
. The mean forecast is different from the median (0.50) when the distribution is not symmetric (for example, Beta and Negative Binomial).
The default quantiles are the quantiles you specified during predictor creation. If you didn't specify quantiles, the default values are \["0.1", "0.5", "0.9"\]
.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .forecast_types.is_none()
.
The optional metadata that you apply to the forecast to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.
The following basic restrictions apply to tags:
-
Maximum number of tags per resource - 50.
-
For each resource, each tag key must be unique, and each tag key can have only one value.
-
Maximum key length - 128 Unicode characters in UTF-8.
-
Maximum value length - 256 Unicode characters in UTF-8.
-
If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.
-
Tag keys and values are case sensitive.
-
Do not use
aws:
,AWS:
, or any upper or lowercase combination of such as a prefix for keys as it is reserved for Amazon Web Services use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value hasaws
as its prefix but the key does not, then Forecast considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix ofaws
do not count against your tags per resource limit.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tags.is_none()
.
Sourcepub fn time_series_selector(&self) -> Option<&TimeSeriesSelector>
pub fn time_series_selector(&self) -> Option<&TimeSeriesSelector>
Defines the set of time series that are used to create the forecasts in a TimeSeriesIdentifiers
object.
The TimeSeriesIdentifiers
object needs the following information:
-
DataSource
-
Format
-
Schema
Source§impl CreateForecastInput
impl CreateForecastInput
Sourcepub fn builder() -> CreateForecastInputBuilder
pub fn builder() -> CreateForecastInputBuilder
Creates a new builder-style object to manufacture CreateForecastInput
.
Trait Implementations§
Source§impl Clone for CreateForecastInput
impl Clone for CreateForecastInput
Source§fn clone(&self) -> CreateForecastInput
fn clone(&self) -> CreateForecastInput
1.0.0 · Source§const fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for CreateForecastInput
impl Debug for CreateForecastInput
Source§impl PartialEq for CreateForecastInput
impl PartialEq for CreateForecastInput
impl StructuralPartialEq for CreateForecastInput
Auto Trait Implementations§
impl Freeze for CreateForecastInput
impl RefUnwindSafe for CreateForecastInput
impl Send for CreateForecastInput
impl Sync for CreateForecastInput
impl Unpin for CreateForecastInput
impl UnwindSafe for CreateForecastInput
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);