#[non_exhaustive]pub struct HyperParameterTuningJobConfig { /* private fields */ }Expand description
Configuration information for a hyperparameter tuning job. You specify this object in the CreatePredictor request.
A hyperparameter is a parameter that governs the model training process. You set hyperparameters before training starts, unlike model parameters, which are determined during training. The values of the hyperparameters effect which values are chosen for the model parameters.
In a hyperparameter tuning job, Amazon Forecast chooses the set of hyperparameter values that optimize a specified metric. Forecast accomplishes this by running many training jobs over a range of hyperparameter values. The optimum set of values depends on the algorithm, the training data, and the specified metric objective.
Implementations§
source§impl HyperParameterTuningJobConfig
impl HyperParameterTuningJobConfig
sourcepub fn parameter_ranges(&self) -> Option<&ParameterRanges>
pub fn parameter_ranges(&self) -> Option<&ParameterRanges>
Specifies the ranges of valid values for the hyperparameters.
source§impl HyperParameterTuningJobConfig
impl HyperParameterTuningJobConfig
sourcepub fn builder() -> Builder
pub fn builder() -> Builder
Creates a new builder-style object to manufacture HyperParameterTuningJobConfig.
Trait Implementations§
source§impl Clone for HyperParameterTuningJobConfig
impl Clone for HyperParameterTuningJobConfig
source§fn clone(&self) -> HyperParameterTuningJobConfig
fn clone(&self) -> HyperParameterTuningJobConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moresource§impl PartialEq<HyperParameterTuningJobConfig> for HyperParameterTuningJobConfig
impl PartialEq<HyperParameterTuningJobConfig> for HyperParameterTuningJobConfig
source§fn eq(&self, other: &HyperParameterTuningJobConfig) -> bool
fn eq(&self, other: &HyperParameterTuningJobConfig) -> bool
self and other values to be equal, and is used
by ==.