Struct CreateKxDataviewFluentBuilder

Source
pub struct CreateKxDataviewFluentBuilder { /* private fields */ }
Expand description

Fluent builder constructing a request to CreateKxDataview.

Creates a snapshot of kdb database with tiered storage capabilities and a pre-warmed cache, ready for mounting on kdb clusters. Dataviews are only available for clusters running on a scaling group. They are not supported on dedicated clusters.

Implementations§

Source§

impl CreateKxDataviewFluentBuilder

Source

pub fn as_input(&self) -> &CreateKxDataviewInputBuilder

Access the CreateKxDataview as a reference.

Source

pub async fn send( self, ) -> Result<CreateKxDataviewOutput, SdkError<CreateKxDataviewError, HttpResponse>>

Sends the request and returns the response.

If an error occurs, an SdkError will be returned with additional details that can be matched against.

By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.

Source

pub fn customize( self, ) -> CustomizableOperation<CreateKxDataviewOutput, CreateKxDataviewError, Self>

Consumes this builder, creating a customizable operation that can be modified before being sent.

Source

pub fn environment_id(self, input: impl Into<String>) -> Self

A unique identifier for the kdb environment, where you want to create the dataview.

Source

pub fn set_environment_id(self, input: Option<String>) -> Self

A unique identifier for the kdb environment, where you want to create the dataview.

Source

pub fn get_environment_id(&self) -> &Option<String>

A unique identifier for the kdb environment, where you want to create the dataview.

Source

pub fn database_name(self, input: impl Into<String>) -> Self

The name of the database where you want to create a dataview.

Source

pub fn set_database_name(self, input: Option<String>) -> Self

The name of the database where you want to create a dataview.

Source

pub fn get_database_name(&self) -> &Option<String>

The name of the database where you want to create a dataview.

Source

pub fn dataview_name(self, input: impl Into<String>) -> Self

A unique identifier for the dataview.

Source

pub fn set_dataview_name(self, input: Option<String>) -> Self

A unique identifier for the dataview.

Source

pub fn get_dataview_name(&self) -> &Option<String>

A unique identifier for the dataview.

Source

pub fn az_mode(self, input: KxAzMode) -> Self

The number of availability zones you want to assign per volume. Currently, FinSpace only supports SINGLE for volumes. This places dataview in a single AZ.

Source

pub fn set_az_mode(self, input: Option<KxAzMode>) -> Self

The number of availability zones you want to assign per volume. Currently, FinSpace only supports SINGLE for volumes. This places dataview in a single AZ.

Source

pub fn get_az_mode(&self) -> &Option<KxAzMode>

The number of availability zones you want to assign per volume. Currently, FinSpace only supports SINGLE for volumes. This places dataview in a single AZ.

Source

pub fn availability_zone_id(self, input: impl Into<String>) -> Self

The identifier of the availability zones.

Source

pub fn set_availability_zone_id(self, input: Option<String>) -> Self

The identifier of the availability zones.

Source

pub fn get_availability_zone_id(&self) -> &Option<String>

The identifier of the availability zones.

Source

pub fn changeset_id(self, input: impl Into<String>) -> Self

A unique identifier of the changeset that you want to use to ingest data.

Source

pub fn set_changeset_id(self, input: Option<String>) -> Self

A unique identifier of the changeset that you want to use to ingest data.

Source

pub fn get_changeset_id(&self) -> &Option<String>

A unique identifier of the changeset that you want to use to ingest data.

Source

pub fn segment_configurations( self, input: KxDataviewSegmentConfiguration, ) -> Self

Appends an item to segmentConfigurations.

To override the contents of this collection use set_segment_configurations.

The configuration that contains the database path of the data that you want to place on each selected volume. Each segment must have a unique database path for each volume. If you do not explicitly specify any database path for a volume, they are accessible from the cluster through the default S3/object store segment.

Source

pub fn set_segment_configurations( self, input: Option<Vec<KxDataviewSegmentConfiguration>>, ) -> Self

The configuration that contains the database path of the data that you want to place on each selected volume. Each segment must have a unique database path for each volume. If you do not explicitly specify any database path for a volume, they are accessible from the cluster through the default S3/object store segment.

Source

pub fn get_segment_configurations( &self, ) -> &Option<Vec<KxDataviewSegmentConfiguration>>

The configuration that contains the database path of the data that you want to place on each selected volume. Each segment must have a unique database path for each volume. If you do not explicitly specify any database path for a volume, they are accessible from the cluster through the default S3/object store segment.

Source

pub fn auto_update(self, input: bool) -> Self

The option to specify whether you want to apply all the future additions and corrections automatically to the dataview, when you ingest new changesets. The default value is false.

Source

pub fn set_auto_update(self, input: Option<bool>) -> Self

The option to specify whether you want to apply all the future additions and corrections automatically to the dataview, when you ingest new changesets. The default value is false.

Source

pub fn get_auto_update(&self) -> &Option<bool>

The option to specify whether you want to apply all the future additions and corrections automatically to the dataview, when you ingest new changesets. The default value is false.

Source

pub fn read_write(self, input: bool) -> Self

The option to specify whether you want to make the dataview writable to perform database maintenance. The following are some considerations related to writable dataviews.



  • You cannot create partial writable dataviews. When you create writeable dataviews you must provide the entire database path.

  • You cannot perform updates on a writeable dataview. Hence, autoUpdate must be set as False if readWrite is True for a dataview.

  • You must also use a unique volume for creating a writeable dataview. So, if you choose a volume that is already in use by another dataview, the dataview creation fails.

  • Once you create a dataview as writeable, you cannot change it to read-only. So, you cannot update the readWrite parameter later.

Source

pub fn set_read_write(self, input: Option<bool>) -> Self

The option to specify whether you want to make the dataview writable to perform database maintenance. The following are some considerations related to writable dataviews.



  • You cannot create partial writable dataviews. When you create writeable dataviews you must provide the entire database path.

  • You cannot perform updates on a writeable dataview. Hence, autoUpdate must be set as False if readWrite is True for a dataview.

  • You must also use a unique volume for creating a writeable dataview. So, if you choose a volume that is already in use by another dataview, the dataview creation fails.

  • Once you create a dataview as writeable, you cannot change it to read-only. So, you cannot update the readWrite parameter later.

Source

pub fn get_read_write(&self) -> &Option<bool>

The option to specify whether you want to make the dataview writable to perform database maintenance. The following are some considerations related to writable dataviews.



  • You cannot create partial writable dataviews. When you create writeable dataviews you must provide the entire database path.

  • You cannot perform updates on a writeable dataview. Hence, autoUpdate must be set as False if readWrite is True for a dataview.

  • You must also use a unique volume for creating a writeable dataview. So, if you choose a volume that is already in use by another dataview, the dataview creation fails.

  • Once you create a dataview as writeable, you cannot change it to read-only. So, you cannot update the readWrite parameter later.

Source

pub fn description(self, input: impl Into<String>) -> Self

A description of the dataview.

Source

pub fn set_description(self, input: Option<String>) -> Self

A description of the dataview.

Source

pub fn get_description(&self) -> &Option<String>

A description of the dataview.

Source

pub fn tags(self, k: impl Into<String>, v: impl Into<String>) -> Self

Adds a key-value pair to tags.

To override the contents of this collection use set_tags.

A list of key-value pairs to label the dataview. You can add up to 50 tags to a dataview.

Source

pub fn set_tags(self, input: Option<HashMap<String, String>>) -> Self

A list of key-value pairs to label the dataview. You can add up to 50 tags to a dataview.

Source

pub fn get_tags(&self) -> &Option<HashMap<String, String>>

A list of key-value pairs to label the dataview. You can add up to 50 tags to a dataview.

Source

pub fn client_token(self, input: impl Into<String>) -> Self

A token that ensures idempotency. This token expires in 10 minutes.

Source

pub fn set_client_token(self, input: Option<String>) -> Self

A token that ensures idempotency. This token expires in 10 minutes.

Source

pub fn get_client_token(&self) -> &Option<String>

A token that ensures idempotency. This token expires in 10 minutes.

Trait Implementations§

Source§

impl Clone for CreateKxDataviewFluentBuilder

Source§

fn clone(&self) -> CreateKxDataviewFluentBuilder

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for CreateKxDataviewFluentBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,