PutAccountSettingDefaultFluentBuilder

Struct PutAccountSettingDefaultFluentBuilder 

Source
pub struct PutAccountSettingDefaultFluentBuilder { /* private fields */ }
Expand description

Fluent builder constructing a request to PutAccountSettingDefault.

Modifies an account setting for all users on an account for whom no individual account setting has been specified. Account settings are set on a per-Region basis.

Implementations§

Source§

impl PutAccountSettingDefaultFluentBuilder

Source

pub fn as_input(&self) -> &PutAccountSettingDefaultInputBuilder

Access the PutAccountSettingDefault as a reference.

Source

pub async fn send( self, ) -> Result<PutAccountSettingDefaultOutput, SdkError<PutAccountSettingDefaultError, HttpResponse>>

Sends the request and returns the response.

If an error occurs, an SdkError will be returned with additional details that can be matched against.

By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.

Source

pub fn customize( self, ) -> CustomizableOperation<PutAccountSettingDefaultOutput, PutAccountSettingDefaultError, Self>

Consumes this builder, creating a customizable operation that can be modified before being sent.

Source

pub fn name(self, input: SettingName) -> Self

The resource name for which to modify the account setting.

The following are the valid values for the account setting name.

  • serviceLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • taskLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • containerInstanceLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • awsvpcTrunking - When modified, the elastic network interface (ENI) limit for any new container instances that support the feature is changed. If awsvpcTrunking is turned on, any new container instances that support the feature are launched have the increased ENI limits available to them. For more information, see Elastic Network Interface Trunking in the Amazon Elastic Container Service Developer Guide.

  • containerInsights - Container Insights with enhanced observability provides all the Container Insights metrics, plus additional task and container metrics. This version supports enhanced observability for Amazon ECS clusters using the Amazon EC2 and Fargate launch types. After you configure Container Insights with enhanced observability on Amazon ECS, Container Insights auto-collects detailed infrastructure telemetry from the cluster level down to the container level in your environment and displays these critical performance data in curated dashboards removing the heavy lifting in observability set-up.

    To use Container Insights with enhanced observability, set the containerInsights account setting to enhanced.

    To use Container Insights, set the containerInsights account setting to enabled.

    For more information, see Monitor Amazon ECS containers using Container Insights with enhanced observability in the Amazon Elastic Container Service Developer Guide.

  • dualStackIPv6 - When turned on, when using a VPC in dual stack mode, your tasks using the awsvpc network mode can have an IPv6 address assigned. For more information on using IPv6 with tasks launched on Amazon EC2 instances, see Using a VPC in dual-stack mode. For more information on using IPv6 with tasks launched on Fargate, see Using a VPC in dual-stack mode.

  • fargateFIPSMode - If you specify fargateFIPSMode, Fargate FIPS 140 compliance is affected.

  • fargateTaskRetirementWaitPeriod - When Amazon Web Services determines that a security or infrastructure update is needed for an Amazon ECS task hosted on Fargate, the tasks need to be stopped and new tasks launched to replace them. Use fargateTaskRetirementWaitPeriod to configure the wait time to retire a Fargate task. For information about the Fargate tasks maintenance, see Amazon Web Services Fargate task maintenance in the Amazon ECS Developer Guide.

  • tagResourceAuthorization - Amazon ECS is introducing tagging authorization for resource creation. Users must have permissions for actions that create the resource, such as ecsCreateCluster. If tags are specified when you create a resource, Amazon Web Services performs additional authorization to verify if users or roles have permissions to create tags. Therefore, you must grant explicit permissions to use the ecs:TagResource action. For more information, see Grant permission to tag resources on creation in the Amazon ECS Developer Guide.

  • defaultLogDriverMode -Amazon ECS supports setting a default delivery mode of log messages from a container to the logDriver that you specify in the container's logConfiguration. The delivery mode affects application stability when the flow of logs from the container to the log driver is interrupted. The defaultLogDriverMode setting supports two values: blocking and non-blocking. If you don't specify a delivery mode in your container definition's logConfiguration, the mode you specify using this account setting will be used as the default. For more information about log delivery modes, see LogConfiguration.

    On June 25, 2025, Amazon ECS changed the default log driver mode from blocking to non-blocking to prioritize task availability over logging. To continue using the blocking mode after this change, do one of the following:

    • Set the mode option in your container definition's logConfiguration as blocking.

    • Set the defaultLogDriverMode account setting to blocking.

  • guardDutyActivate - The guardDutyActivate parameter is read-only in Amazon ECS and indicates whether Amazon ECS Runtime Monitoring is enabled or disabled by your security administrator in your Amazon ECS account. Amazon GuardDuty controls this account setting on your behalf. For more information, see Protecting Amazon ECS workloads with Amazon ECS Runtime Monitoring.

Source

pub fn set_name(self, input: Option<SettingName>) -> Self

The resource name for which to modify the account setting.

The following are the valid values for the account setting name.

  • serviceLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • taskLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • containerInstanceLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • awsvpcTrunking - When modified, the elastic network interface (ENI) limit for any new container instances that support the feature is changed. If awsvpcTrunking is turned on, any new container instances that support the feature are launched have the increased ENI limits available to them. For more information, see Elastic Network Interface Trunking in the Amazon Elastic Container Service Developer Guide.

  • containerInsights - Container Insights with enhanced observability provides all the Container Insights metrics, plus additional task and container metrics. This version supports enhanced observability for Amazon ECS clusters using the Amazon EC2 and Fargate launch types. After you configure Container Insights with enhanced observability on Amazon ECS, Container Insights auto-collects detailed infrastructure telemetry from the cluster level down to the container level in your environment and displays these critical performance data in curated dashboards removing the heavy lifting in observability set-up.

    To use Container Insights with enhanced observability, set the containerInsights account setting to enhanced.

    To use Container Insights, set the containerInsights account setting to enabled.

    For more information, see Monitor Amazon ECS containers using Container Insights with enhanced observability in the Amazon Elastic Container Service Developer Guide.

  • dualStackIPv6 - When turned on, when using a VPC in dual stack mode, your tasks using the awsvpc network mode can have an IPv6 address assigned. For more information on using IPv6 with tasks launched on Amazon EC2 instances, see Using a VPC in dual-stack mode. For more information on using IPv6 with tasks launched on Fargate, see Using a VPC in dual-stack mode.

  • fargateFIPSMode - If you specify fargateFIPSMode, Fargate FIPS 140 compliance is affected.

  • fargateTaskRetirementWaitPeriod - When Amazon Web Services determines that a security or infrastructure update is needed for an Amazon ECS task hosted on Fargate, the tasks need to be stopped and new tasks launched to replace them. Use fargateTaskRetirementWaitPeriod to configure the wait time to retire a Fargate task. For information about the Fargate tasks maintenance, see Amazon Web Services Fargate task maintenance in the Amazon ECS Developer Guide.

  • tagResourceAuthorization - Amazon ECS is introducing tagging authorization for resource creation. Users must have permissions for actions that create the resource, such as ecsCreateCluster. If tags are specified when you create a resource, Amazon Web Services performs additional authorization to verify if users or roles have permissions to create tags. Therefore, you must grant explicit permissions to use the ecs:TagResource action. For more information, see Grant permission to tag resources on creation in the Amazon ECS Developer Guide.

  • defaultLogDriverMode -Amazon ECS supports setting a default delivery mode of log messages from a container to the logDriver that you specify in the container's logConfiguration. The delivery mode affects application stability when the flow of logs from the container to the log driver is interrupted. The defaultLogDriverMode setting supports two values: blocking and non-blocking. If you don't specify a delivery mode in your container definition's logConfiguration, the mode you specify using this account setting will be used as the default. For more information about log delivery modes, see LogConfiguration.

    On June 25, 2025, Amazon ECS changed the default log driver mode from blocking to non-blocking to prioritize task availability over logging. To continue using the blocking mode after this change, do one of the following:

    • Set the mode option in your container definition's logConfiguration as blocking.

    • Set the defaultLogDriverMode account setting to blocking.

  • guardDutyActivate - The guardDutyActivate parameter is read-only in Amazon ECS and indicates whether Amazon ECS Runtime Monitoring is enabled or disabled by your security administrator in your Amazon ECS account. Amazon GuardDuty controls this account setting on your behalf. For more information, see Protecting Amazon ECS workloads with Amazon ECS Runtime Monitoring.

Source

pub fn get_name(&self) -> &Option<SettingName>

The resource name for which to modify the account setting.

The following are the valid values for the account setting name.

  • serviceLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • taskLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • containerInstanceLongArnFormat - When modified, the Amazon Resource Name (ARN) and resource ID format of the resource type for a specified user, role, or the root user for an account is affected. The opt-in and opt-out account setting must be set for each Amazon ECS resource separately. The ARN and resource ID format of a resource is defined by the opt-in status of the user or role that created the resource. You must turn on this setting to use Amazon ECS features such as resource tagging.

  • awsvpcTrunking - When modified, the elastic network interface (ENI) limit for any new container instances that support the feature is changed. If awsvpcTrunking is turned on, any new container instances that support the feature are launched have the increased ENI limits available to them. For more information, see Elastic Network Interface Trunking in the Amazon Elastic Container Service Developer Guide.

  • containerInsights - Container Insights with enhanced observability provides all the Container Insights metrics, plus additional task and container metrics. This version supports enhanced observability for Amazon ECS clusters using the Amazon EC2 and Fargate launch types. After you configure Container Insights with enhanced observability on Amazon ECS, Container Insights auto-collects detailed infrastructure telemetry from the cluster level down to the container level in your environment and displays these critical performance data in curated dashboards removing the heavy lifting in observability set-up.

    To use Container Insights with enhanced observability, set the containerInsights account setting to enhanced.

    To use Container Insights, set the containerInsights account setting to enabled.

    For more information, see Monitor Amazon ECS containers using Container Insights with enhanced observability in the Amazon Elastic Container Service Developer Guide.

  • dualStackIPv6 - When turned on, when using a VPC in dual stack mode, your tasks using the awsvpc network mode can have an IPv6 address assigned. For more information on using IPv6 with tasks launched on Amazon EC2 instances, see Using a VPC in dual-stack mode. For more information on using IPv6 with tasks launched on Fargate, see Using a VPC in dual-stack mode.

  • fargateFIPSMode - If you specify fargateFIPSMode, Fargate FIPS 140 compliance is affected.

  • fargateTaskRetirementWaitPeriod - When Amazon Web Services determines that a security or infrastructure update is needed for an Amazon ECS task hosted on Fargate, the tasks need to be stopped and new tasks launched to replace them. Use fargateTaskRetirementWaitPeriod to configure the wait time to retire a Fargate task. For information about the Fargate tasks maintenance, see Amazon Web Services Fargate task maintenance in the Amazon ECS Developer Guide.

  • tagResourceAuthorization - Amazon ECS is introducing tagging authorization for resource creation. Users must have permissions for actions that create the resource, such as ecsCreateCluster. If tags are specified when you create a resource, Amazon Web Services performs additional authorization to verify if users or roles have permissions to create tags. Therefore, you must grant explicit permissions to use the ecs:TagResource action. For more information, see Grant permission to tag resources on creation in the Amazon ECS Developer Guide.

  • defaultLogDriverMode -Amazon ECS supports setting a default delivery mode of log messages from a container to the logDriver that you specify in the container's logConfiguration. The delivery mode affects application stability when the flow of logs from the container to the log driver is interrupted. The defaultLogDriverMode setting supports two values: blocking and non-blocking. If you don't specify a delivery mode in your container definition's logConfiguration, the mode you specify using this account setting will be used as the default. For more information about log delivery modes, see LogConfiguration.

    On June 25, 2025, Amazon ECS changed the default log driver mode from blocking to non-blocking to prioritize task availability over logging. To continue using the blocking mode after this change, do one of the following:

    • Set the mode option in your container definition's logConfiguration as blocking.

    • Set the defaultLogDriverMode account setting to blocking.

  • guardDutyActivate - The guardDutyActivate parameter is read-only in Amazon ECS and indicates whether Amazon ECS Runtime Monitoring is enabled or disabled by your security administrator in your Amazon ECS account. Amazon GuardDuty controls this account setting on your behalf. For more information, see Protecting Amazon ECS workloads with Amazon ECS Runtime Monitoring.

Source

pub fn value(self, input: impl Into<String>) -> Self

The account setting value for the specified principal ARN. Accepted values are enabled, disabled, on, enhanced, and off.

When you specify fargateTaskRetirementWaitPeriod for the name, the following are the valid values:

  • 0 - Amazon Web Services sends the notification, and immediately retires the affected tasks.

  • 7 - Amazon Web Services sends the notification, and waits 7 calendar days to retire the tasks.

  • 14 - Amazon Web Services sends the notification, and waits 14 calendar days to retire the tasks.

Source

pub fn set_value(self, input: Option<String>) -> Self

The account setting value for the specified principal ARN. Accepted values are enabled, disabled, on, enhanced, and off.

When you specify fargateTaskRetirementWaitPeriod for the name, the following are the valid values:

  • 0 - Amazon Web Services sends the notification, and immediately retires the affected tasks.

  • 7 - Amazon Web Services sends the notification, and waits 7 calendar days to retire the tasks.

  • 14 - Amazon Web Services sends the notification, and waits 14 calendar days to retire the tasks.

Source

pub fn get_value(&self) -> &Option<String>

The account setting value for the specified principal ARN. Accepted values are enabled, disabled, on, enhanced, and off.

When you specify fargateTaskRetirementWaitPeriod for the name, the following are the valid values:

  • 0 - Amazon Web Services sends the notification, and immediately retires the affected tasks.

  • 7 - Amazon Web Services sends the notification, and waits 7 calendar days to retire the tasks.

  • 14 - Amazon Web Services sends the notification, and waits 14 calendar days to retire the tasks.

Trait Implementations§

Source§

impl Clone for PutAccountSettingDefaultFluentBuilder

Source§

fn clone(&self) -> PutAccountSettingDefaultFluentBuilder

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for PutAccountSettingDefaultFluentBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,