RegisterImageInput

Struct RegisterImageInput 

Source
#[non_exhaustive]
pub struct RegisterImageInput {
Show 18 fields pub image_location: Option<String>, pub billing_products: Option<Vec<String>>, pub boot_mode: Option<BootModeValues>, pub tpm_support: Option<TpmSupportValues>, pub uefi_data: Option<String>, pub imds_support: Option<ImdsSupportValues>, pub tag_specifications: Option<Vec<TagSpecification>>, pub dry_run: Option<bool>, pub name: Option<String>, pub description: Option<String>, pub architecture: Option<ArchitectureValues>, pub kernel_id: Option<String>, pub ramdisk_id: Option<String>, pub root_device_name: Option<String>, pub block_device_mappings: Option<Vec<BlockDeviceMapping>>, pub virtualization_type: Option<String>, pub sriov_net_support: Option<String>, pub ena_support: Option<bool>,
}
Expand description

Contains the parameters for RegisterImage.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§image_location: Option<String>

The full path to your AMI manifest in Amazon S3 storage. The specified bucket must have the aws-exec-read canned access control list (ACL) to ensure that it can be accessed by Amazon EC2. For more information, see Canned ACL in the Amazon S3 Service Developer Guide.

§billing_products: Option<Vec<String>>

The billing product codes. Your account must be authorized to specify billing product codes.

If your account is not authorized to specify billing product codes, you can publish AMIs that include billable software and list them on the Amazon Web Services Marketplace. You must first register as a seller on the Amazon Web Services Marketplace. For more information, see Getting started as an Amazon Web Services Marketplace seller and AMI-based products in Amazon Web Services Marketplace in the Amazon Web Services Marketplace Seller Guide.

§boot_mode: Option<BootModeValues>

The boot mode of the AMI. A value of uefi-preferred indicates that the AMI supports both UEFI and Legacy BIOS.

The operating system contained in the AMI must be configured to support the specified boot mode.

For more information, see Instance launch behavior with Amazon EC2 boot modes in the Amazon EC2 User Guide.

§tpm_support: Option<TpmSupportValues>

Set to v2.0 to enable Trusted Platform Module (TPM) support. For more information, see NitroTPM in the Amazon EC2 User Guide.

§uefi_data: Option<String>

Base64 representation of the non-volatile UEFI variable store. To retrieve the UEFI data, use the GetInstanceUefiData command. You can inspect and modify the UEFI data by using the python-uefivars tool on GitHub. For more information, see UEFI Secure Boot for Amazon EC2 instances in the Amazon EC2 User Guide.

§imds_support: Option<ImdsSupportValues>

Set to v2.0 to indicate that IMDSv2 is specified in the AMI. Instances launched from this AMI will have HttpTokens automatically set to required so that, by default, the instance requires that IMDSv2 is used when requesting instance metadata. In addition, HttpPutResponseHopLimit is set to 2. For more information, see Configure the AMI in the Amazon EC2 User Guide.

If you set the value to v2.0, make sure that your AMI software can support IMDSv2.

§tag_specifications: Option<Vec<TagSpecification>>

The tags to apply to the AMI.

To tag the AMI, the value for ResourceType must be image. If you specify another value for ResourceType, the request fails.

To tag an AMI after it has been registered, see CreateTags.

§dry_run: Option<bool>

Checks whether you have the required permissions for the action, without actually making the request, and provides an error response. If you have the required permissions, the error response is DryRunOperation. Otherwise, it is UnauthorizedOperation.

§name: Option<String>

A name for your AMI.

Constraints: 3-128 alphanumeric characters, parentheses (()), square brackets (\[\]), spaces ( ), periods (.), slashes (/), dashes (-), single quotes ('), at-signs (@), or underscores(_)

§description: Option<String>

A description for your AMI.

§architecture: Option<ArchitectureValues>

The architecture of the AMI.

Default: For Amazon EBS-backed AMIs, i386. For instance store-backed AMIs, the architecture specified in the manifest file.

§kernel_id: Option<String>

The ID of the kernel.

§ramdisk_id: Option<String>

The ID of the RAM disk.

§root_device_name: Option<String>

The device name of the root device volume (for example, /dev/sda1).

§block_device_mappings: Option<Vec<BlockDeviceMapping>>

The block device mapping entries.

If you specify an Amazon EBS volume using the ID of an Amazon EBS snapshot, you can't specify the encryption state of the volume.

If you create an AMI on an Outpost, then all backing snapshots must be on the same Outpost or in the Region of that Outpost. AMIs on an Outpost that include local snapshots can be used to launch instances on the same Outpost only. For more information, Create AMIs from local snapshots in the Amazon EBS User Guide.

§virtualization_type: Option<String>

The type of virtualization (hvm | paravirtual).

Default: paravirtual

§sriov_net_support: Option<String>

Set to simple to enable enhanced networking with the Intel 82599 Virtual Function interface for the AMI and any instances that you launch from the AMI.

There is no way to disable sriovNetSupport at this time.

This option is supported only for HVM AMIs. Specifying this option with a PV AMI can make instances launched from the AMI unreachable.

§ena_support: Option<bool>

Set to true to enable enhanced networking with ENA for the AMI and any instances that you launch from the AMI.

This option is supported only for HVM AMIs. Specifying this option with a PV AMI can make instances launched from the AMI unreachable.

Implementations§

Source§

impl RegisterImageInput

Source

pub fn image_location(&self) -> Option<&str>

The full path to your AMI manifest in Amazon S3 storage. The specified bucket must have the aws-exec-read canned access control list (ACL) to ensure that it can be accessed by Amazon EC2. For more information, see Canned ACL in the Amazon S3 Service Developer Guide.

Source

pub fn billing_products(&self) -> &[String]

The billing product codes. Your account must be authorized to specify billing product codes.

If your account is not authorized to specify billing product codes, you can publish AMIs that include billable software and list them on the Amazon Web Services Marketplace. You must first register as a seller on the Amazon Web Services Marketplace. For more information, see Getting started as an Amazon Web Services Marketplace seller and AMI-based products in Amazon Web Services Marketplace in the Amazon Web Services Marketplace Seller Guide.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .billing_products.is_none().

Source

pub fn boot_mode(&self) -> Option<&BootModeValues>

The boot mode of the AMI. A value of uefi-preferred indicates that the AMI supports both UEFI and Legacy BIOS.

The operating system contained in the AMI must be configured to support the specified boot mode.

For more information, see Instance launch behavior with Amazon EC2 boot modes in the Amazon EC2 User Guide.

Source

pub fn tpm_support(&self) -> Option<&TpmSupportValues>

Set to v2.0 to enable Trusted Platform Module (TPM) support. For more information, see NitroTPM in the Amazon EC2 User Guide.

Source

pub fn uefi_data(&self) -> Option<&str>

Base64 representation of the non-volatile UEFI variable store. To retrieve the UEFI data, use the GetInstanceUefiData command. You can inspect and modify the UEFI data by using the python-uefivars tool on GitHub. For more information, see UEFI Secure Boot for Amazon EC2 instances in the Amazon EC2 User Guide.

Source

pub fn imds_support(&self) -> Option<&ImdsSupportValues>

Set to v2.0 to indicate that IMDSv2 is specified in the AMI. Instances launched from this AMI will have HttpTokens automatically set to required so that, by default, the instance requires that IMDSv2 is used when requesting instance metadata. In addition, HttpPutResponseHopLimit is set to 2. For more information, see Configure the AMI in the Amazon EC2 User Guide.

If you set the value to v2.0, make sure that your AMI software can support IMDSv2.

Source

pub fn tag_specifications(&self) -> &[TagSpecification]

The tags to apply to the AMI.

To tag the AMI, the value for ResourceType must be image. If you specify another value for ResourceType, the request fails.

To tag an AMI after it has been registered, see CreateTags.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tag_specifications.is_none().

Source

pub fn dry_run(&self) -> Option<bool>

Checks whether you have the required permissions for the action, without actually making the request, and provides an error response. If you have the required permissions, the error response is DryRunOperation. Otherwise, it is UnauthorizedOperation.

Source

pub fn name(&self) -> Option<&str>

A name for your AMI.

Constraints: 3-128 alphanumeric characters, parentheses (()), square brackets (\[\]), spaces ( ), periods (.), slashes (/), dashes (-), single quotes ('), at-signs (@), or underscores(_)

Source

pub fn description(&self) -> Option<&str>

A description for your AMI.

Source

pub fn architecture(&self) -> Option<&ArchitectureValues>

The architecture of the AMI.

Default: For Amazon EBS-backed AMIs, i386. For instance store-backed AMIs, the architecture specified in the manifest file.

Source

pub fn kernel_id(&self) -> Option<&str>

The ID of the kernel.

Source

pub fn ramdisk_id(&self) -> Option<&str>

The ID of the RAM disk.

Source

pub fn root_device_name(&self) -> Option<&str>

The device name of the root device volume (for example, /dev/sda1).

Source

pub fn block_device_mappings(&self) -> &[BlockDeviceMapping]

The block device mapping entries.

If you specify an Amazon EBS volume using the ID of an Amazon EBS snapshot, you can't specify the encryption state of the volume.

If you create an AMI on an Outpost, then all backing snapshots must be on the same Outpost or in the Region of that Outpost. AMIs on an Outpost that include local snapshots can be used to launch instances on the same Outpost only. For more information, Create AMIs from local snapshots in the Amazon EBS User Guide.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .block_device_mappings.is_none().

Source

pub fn virtualization_type(&self) -> Option<&str>

The type of virtualization (hvm | paravirtual).

Default: paravirtual

Source

pub fn sriov_net_support(&self) -> Option<&str>

Set to simple to enable enhanced networking with the Intel 82599 Virtual Function interface for the AMI and any instances that you launch from the AMI.

There is no way to disable sriovNetSupport at this time.

This option is supported only for HVM AMIs. Specifying this option with a PV AMI can make instances launched from the AMI unreachable.

Source

pub fn ena_support(&self) -> Option<bool>

Set to true to enable enhanced networking with ENA for the AMI and any instances that you launch from the AMI.

This option is supported only for HVM AMIs. Specifying this option with a PV AMI can make instances launched from the AMI unreachable.

Source§

impl RegisterImageInput

Source

pub fn builder() -> RegisterImageInputBuilder

Creates a new builder-style object to manufacture RegisterImageInput.

Trait Implementations§

Source§

impl Clone for RegisterImageInput

Source§

fn clone(&self) -> RegisterImageInput

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for RegisterImageInput

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for RegisterImageInput

Source§

fn eq(&self, other: &RegisterImageInput) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for RegisterImageInput

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more