Struct CreateVpcInput

Source
#[non_exhaustive]
pub struct CreateVpcInput { pub cidr_block: Option<String>, pub ipv6_pool: Option<String>, pub ipv6_cidr_block: Option<String>, pub ipv4_ipam_pool_id: Option<String>, pub ipv4_netmask_length: Option<i32>, pub ipv6_ipam_pool_id: Option<String>, pub ipv6_netmask_length: Option<i32>, pub ipv6_cidr_block_network_border_group: Option<String>, pub tag_specifications: Option<Vec<TagSpecification>>, pub dry_run: Option<bool>, pub instance_tenancy: Option<Tenancy>, pub amazon_provided_ipv6_cidr_block: Option<bool>, }

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§cidr_block: Option<String>

The IPv4 network range for the VPC, in CIDR notation. For example, 10.0.0.0/16. We modify the specified CIDR block to its canonical form; for example, if you specify 100.68.0.18/18, we modify it to 100.68.0.0/18.

§ipv6_pool: Option<String>

The ID of an IPv6 address pool from which to allocate the IPv6 CIDR block.

§ipv6_cidr_block: Option<String>

The IPv6 CIDR block from the IPv6 address pool. You must also specify Ipv6Pool in the request.

To let Amazon choose the IPv6 CIDR block for you, omit this parameter.

§ipv4_ipam_pool_id: Option<String>

The ID of an IPv4 IPAM pool you want to use for allocating this VPC's CIDR. For more information, see What is IPAM? in the Amazon VPC IPAM User Guide.

§ipv4_netmask_length: Option<i32>

The netmask length of the IPv4 CIDR you want to allocate to this VPC from an Amazon VPC IP Address Manager (IPAM) pool. For more information about IPAM, see What is IPAM? in the Amazon VPC IPAM User Guide.

§ipv6_ipam_pool_id: Option<String>

The ID of an IPv6 IPAM pool which will be used to allocate this VPC an IPv6 CIDR. IPAM is a VPC feature that you can use to automate your IP address management workflows including assigning, tracking, troubleshooting, and auditing IP addresses across Amazon Web Services Regions and accounts throughout your Amazon Web Services Organization. For more information, see What is IPAM? in the Amazon VPC IPAM User Guide.

§ipv6_netmask_length: Option<i32>

The netmask length of the IPv6 CIDR you want to allocate to this VPC from an Amazon VPC IP Address Manager (IPAM) pool. For more information about IPAM, see What is IPAM? in the Amazon VPC IPAM User Guide.

§ipv6_cidr_block_network_border_group: Option<String>

The name of the location from which we advertise the IPV6 CIDR block. Use this parameter to limit the address to this location.

You must set AmazonProvidedIpv6CidrBlock to true to use this parameter.

§tag_specifications: Option<Vec<TagSpecification>>

The tags to assign to the VPC.

§dry_run: Option<bool>

Checks whether you have the required permissions for the action, without actually making the request, and provides an error response. If you have the required permissions, the error response is DryRunOperation. Otherwise, it is UnauthorizedOperation.

§instance_tenancy: Option<Tenancy>

The tenancy options for instances launched into the VPC. For default, instances are launched with shared tenancy by default. You can launch instances with any tenancy into a shared tenancy VPC. For dedicated, instances are launched as dedicated tenancy instances by default. You can only launch instances with a tenancy of dedicated or host into a dedicated tenancy VPC.

Important: The host value cannot be used with this parameter. Use the default or dedicated values only.

Default: default

§amazon_provided_ipv6_cidr_block: Option<bool>

Requests an Amazon-provided IPv6 CIDR block with a /56 prefix length for the VPC. You cannot specify the range of IP addresses, or the size of the CIDR block.

Implementations§

Source§

impl CreateVpcInput

Source

pub fn cidr_block(&self) -> Option<&str>

The IPv4 network range for the VPC, in CIDR notation. For example, 10.0.0.0/16. We modify the specified CIDR block to its canonical form; for example, if you specify 100.68.0.18/18, we modify it to 100.68.0.0/18.

Source

pub fn ipv6_pool(&self) -> Option<&str>

The ID of an IPv6 address pool from which to allocate the IPv6 CIDR block.

Source

pub fn ipv6_cidr_block(&self) -> Option<&str>

The IPv6 CIDR block from the IPv6 address pool. You must also specify Ipv6Pool in the request.

To let Amazon choose the IPv6 CIDR block for you, omit this parameter.

Source

pub fn ipv4_ipam_pool_id(&self) -> Option<&str>

The ID of an IPv4 IPAM pool you want to use for allocating this VPC's CIDR. For more information, see What is IPAM? in the Amazon VPC IPAM User Guide.

Source

pub fn ipv4_netmask_length(&self) -> Option<i32>

The netmask length of the IPv4 CIDR you want to allocate to this VPC from an Amazon VPC IP Address Manager (IPAM) pool. For more information about IPAM, see What is IPAM? in the Amazon VPC IPAM User Guide.

Source

pub fn ipv6_ipam_pool_id(&self) -> Option<&str>

The ID of an IPv6 IPAM pool which will be used to allocate this VPC an IPv6 CIDR. IPAM is a VPC feature that you can use to automate your IP address management workflows including assigning, tracking, troubleshooting, and auditing IP addresses across Amazon Web Services Regions and accounts throughout your Amazon Web Services Organization. For more information, see What is IPAM? in the Amazon VPC IPAM User Guide.

Source

pub fn ipv6_netmask_length(&self) -> Option<i32>

The netmask length of the IPv6 CIDR you want to allocate to this VPC from an Amazon VPC IP Address Manager (IPAM) pool. For more information about IPAM, see What is IPAM? in the Amazon VPC IPAM User Guide.

Source

pub fn ipv6_cidr_block_network_border_group(&self) -> Option<&str>

The name of the location from which we advertise the IPV6 CIDR block. Use this parameter to limit the address to this location.

You must set AmazonProvidedIpv6CidrBlock to true to use this parameter.

Source

pub fn tag_specifications(&self) -> &[TagSpecification]

The tags to assign to the VPC.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tag_specifications.is_none().

Source

pub fn dry_run(&self) -> Option<bool>

Checks whether you have the required permissions for the action, without actually making the request, and provides an error response. If you have the required permissions, the error response is DryRunOperation. Otherwise, it is UnauthorizedOperation.

Source

pub fn instance_tenancy(&self) -> Option<&Tenancy>

The tenancy options for instances launched into the VPC. For default, instances are launched with shared tenancy by default. You can launch instances with any tenancy into a shared tenancy VPC. For dedicated, instances are launched as dedicated tenancy instances by default. You can only launch instances with a tenancy of dedicated or host into a dedicated tenancy VPC.

Important: The host value cannot be used with this parameter. Use the default or dedicated values only.

Default: default

Source

pub fn amazon_provided_ipv6_cidr_block(&self) -> Option<bool>

Requests an Amazon-provided IPv6 CIDR block with a /56 prefix length for the VPC. You cannot specify the range of IP addresses, or the size of the CIDR block.

Source§

impl CreateVpcInput

Source

pub fn builder() -> CreateVpcInputBuilder

Creates a new builder-style object to manufacture CreateVpcInput.

Trait Implementations§

Source§

impl Clone for CreateVpcInput

Source§

fn clone(&self) -> CreateVpcInput

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for CreateVpcInput

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for CreateVpcInput

Source§

fn eq(&self, other: &CreateVpcInput) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for CreateVpcInput

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,