#[non_exhaustive]pub struct ReactiveInsight {
pub id: Option<String>,
pub name: Option<String>,
pub severity: Option<InsightSeverity>,
pub status: Option<InsightStatus>,
pub insight_time_range: Option<InsightTimeRange>,
pub resource_collection: Option<ResourceCollection>,
pub ssm_ops_item_id: Option<String>,
pub description: Option<String>,
}
Expand description
Information about a reactive insight. This object is returned by ListInsights
.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.id: Option<String>
The ID of a reactive insight.
name: Option<String>
The name of a reactive insight.
severity: Option<InsightSeverity>
The severity of the insight. For more information, see Understanding insight severities in the Amazon DevOps Guru User Guide.
status: Option<InsightStatus>
The status of a reactive insight.
insight_time_range: Option<InsightTimeRange>
A time ranged that specifies when the observed behavior in an insight started and ended.
resource_collection: Option<ResourceCollection>
A collection of Amazon Web Services resources supported by DevOps Guru. The two types of Amazon Web Services resource collections supported are Amazon Web Services CloudFormation stacks and Amazon Web Services resources that contain the same Amazon Web Services tag. DevOps Guru can be configured to analyze the Amazon Web Services resources that are defined in the stacks or that are tagged using the same tag key. You can specify up to 500 Amazon Web Services CloudFormation stacks.
ssm_ops_item_id: Option<String>
The ID of the Amazon Web Services System Manager OpsItem created for this insight. You must enable the creation of OpstItems insights before they are created for each insight.
description: Option<String>
Describes the reactive insight.
Implementations§
Source§impl ReactiveInsight
impl ReactiveInsight
Sourcepub fn severity(&self) -> Option<&InsightSeverity>
pub fn severity(&self) -> Option<&InsightSeverity>
The severity of the insight. For more information, see Understanding insight severities in the Amazon DevOps Guru User Guide.
Sourcepub fn status(&self) -> Option<&InsightStatus>
pub fn status(&self) -> Option<&InsightStatus>
The status of a reactive insight.
Sourcepub fn insight_time_range(&self) -> Option<&InsightTimeRange>
pub fn insight_time_range(&self) -> Option<&InsightTimeRange>
A time ranged that specifies when the observed behavior in an insight started and ended.
Sourcepub fn resource_collection(&self) -> Option<&ResourceCollection>
pub fn resource_collection(&self) -> Option<&ResourceCollection>
A collection of Amazon Web Services resources supported by DevOps Guru. The two types of Amazon Web Services resource collections supported are Amazon Web Services CloudFormation stacks and Amazon Web Services resources that contain the same Amazon Web Services tag. DevOps Guru can be configured to analyze the Amazon Web Services resources that are defined in the stacks or that are tagged using the same tag key. You can specify up to 500 Amazon Web Services CloudFormation stacks.
Sourcepub fn ssm_ops_item_id(&self) -> Option<&str>
pub fn ssm_ops_item_id(&self) -> Option<&str>
The ID of the Amazon Web Services System Manager OpsItem created for this insight. You must enable the creation of OpstItems insights before they are created for each insight.
Sourcepub fn description(&self) -> Option<&str>
pub fn description(&self) -> Option<&str>
Describes the reactive insight.
Source§impl ReactiveInsight
impl ReactiveInsight
Sourcepub fn builder() -> ReactiveInsightBuilder
pub fn builder() -> ReactiveInsightBuilder
Creates a new builder-style object to manufacture ReactiveInsight
.
Trait Implementations§
Source§impl Clone for ReactiveInsight
impl Clone for ReactiveInsight
Source§fn clone(&self) -> ReactiveInsight
fn clone(&self) -> ReactiveInsight
1.0.0 · Source§const fn clone_from(&mut self, source: &Self)
const fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for ReactiveInsight
impl Debug for ReactiveInsight
Source§impl PartialEq for ReactiveInsight
impl PartialEq for ReactiveInsight
impl StructuralPartialEq for ReactiveInsight
Auto Trait Implementations§
impl Freeze for ReactiveInsight
impl RefUnwindSafe for ReactiveInsight
impl Send for ReactiveInsight
impl Sync for ReactiveInsight
impl Unpin for ReactiveInsight
impl UnwindSafe for ReactiveInsight
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);