#[non_exhaustive]pub struct AutoScalingGroupRecommendation {Show 13 fields
pub account_id: Option<String>,
pub auto_scaling_group_arn: Option<String>,
pub auto_scaling_group_name: Option<String>,
pub finding: Option<Finding>,
pub utilization_metrics: Option<Vec<UtilizationMetric>>,
pub look_back_period_in_days: f64,
pub current_configuration: Option<AutoScalingGroupConfiguration>,
pub current_instance_gpu_info: Option<GpuInfo>,
pub recommendation_options: Option<Vec<AutoScalingGroupRecommendationOption>>,
pub last_refresh_timestamp: Option<DateTime>,
pub current_performance_risk: Option<CurrentPerformanceRisk>,
pub effective_recommendation_preferences: Option<EffectiveRecommendationPreferences>,
pub inferred_workload_types: Option<Vec<InferredWorkloadType>>,
}
Expand description
Describes an Auto Scaling group recommendation.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.account_id: Option<String>
The Amazon Web Services account ID of the Auto Scaling group.
auto_scaling_group_arn: Option<String>
The Amazon Resource Name (ARN) of the Auto Scaling group.
auto_scaling_group_name: Option<String>
The name of the Auto Scaling group.
finding: Option<Finding>
The finding classification of the Auto Scaling group.
Findings for Auto Scaling groups include:
-
NotOptimized
—An Auto Scaling group is considered not optimized when Compute Optimizer identifies a recommendation that can provide better performance for your workload. -
Optimized
—An Auto Scaling group is considered optimized when Compute Optimizer determines that the group is correctly provisioned to run your workload based on the chosen instance type. For optimized resources, Compute Optimizer might recommend a new generation instance type.
utilization_metrics: Option<Vec<UtilizationMetric>>
An array of objects that describe the utilization metrics of the Auto Scaling group.
look_back_period_in_days: f64
The number of days for which utilization metrics were analyzed for the Auto Scaling group.
current_configuration: Option<AutoScalingGroupConfiguration>
An array of objects that describe the current configuration of the Auto Scaling group.
current_instance_gpu_info: Option<GpuInfo>
Describes the GPU accelerator settings for the current instance type of the Auto Scaling group.
recommendation_options: Option<Vec<AutoScalingGroupRecommendationOption>>
An array of objects that describe the recommendation options for the Auto Scaling group.
last_refresh_timestamp: Option<DateTime>
The timestamp of when the Auto Scaling group recommendation was last generated.
current_performance_risk: Option<CurrentPerformanceRisk>
The risk of the current Auto Scaling group not meeting the performance needs of its workloads. The higher the risk, the more likely the current Auto Scaling group configuration has insufficient capacity and cannot meet workload requirements.
effective_recommendation_preferences: Option<EffectiveRecommendationPreferences>
An object that describes the effective recommendation preferences for the Auto Scaling group.
inferred_workload_types: Option<Vec<InferredWorkloadType>>
The applications that might be running on the instances in the Auto Scaling group as inferred by Compute Optimizer.
Compute Optimizer can infer if one of the following applications might be running on the instances:
-
AmazonEmr
- Infers that Amazon EMR might be running on the instances. -
ApacheCassandra
- Infers that Apache Cassandra might be running on the instances. -
ApacheHadoop
- Infers that Apache Hadoop might be running on the instances. -
Memcached
- Infers that Memcached might be running on the instances. -
NGINX
- Infers that NGINX might be running on the instances. -
PostgreSql
- Infers that PostgreSQL might be running on the instances. -
Redis
- Infers that Redis might be running on the instances. -
Kafka
- Infers that Kafka might be running on the instance. -
SQLServer
- Infers that SQLServer might be running on the instance.
Implementations§
Source§impl AutoScalingGroupRecommendation
impl AutoScalingGroupRecommendation
Sourcepub fn account_id(&self) -> Option<&str>
pub fn account_id(&self) -> Option<&str>
The Amazon Web Services account ID of the Auto Scaling group.
Sourcepub fn auto_scaling_group_arn(&self) -> Option<&str>
pub fn auto_scaling_group_arn(&self) -> Option<&str>
The Amazon Resource Name (ARN) of the Auto Scaling group.
Sourcepub fn auto_scaling_group_name(&self) -> Option<&str>
pub fn auto_scaling_group_name(&self) -> Option<&str>
The name of the Auto Scaling group.
Sourcepub fn finding(&self) -> Option<&Finding>
pub fn finding(&self) -> Option<&Finding>
The finding classification of the Auto Scaling group.
Findings for Auto Scaling groups include:
-
NotOptimized
—An Auto Scaling group is considered not optimized when Compute Optimizer identifies a recommendation that can provide better performance for your workload. -
Optimized
—An Auto Scaling group is considered optimized when Compute Optimizer determines that the group is correctly provisioned to run your workload based on the chosen instance type. For optimized resources, Compute Optimizer might recommend a new generation instance type.
Sourcepub fn utilization_metrics(&self) -> &[UtilizationMetric]
pub fn utilization_metrics(&self) -> &[UtilizationMetric]
An array of objects that describe the utilization metrics of the Auto Scaling group.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .utilization_metrics.is_none()
.
Sourcepub fn look_back_period_in_days(&self) -> f64
pub fn look_back_period_in_days(&self) -> f64
The number of days for which utilization metrics were analyzed for the Auto Scaling group.
Sourcepub fn current_configuration(&self) -> Option<&AutoScalingGroupConfiguration>
pub fn current_configuration(&self) -> Option<&AutoScalingGroupConfiguration>
An array of objects that describe the current configuration of the Auto Scaling group.
Sourcepub fn current_instance_gpu_info(&self) -> Option<&GpuInfo>
pub fn current_instance_gpu_info(&self) -> Option<&GpuInfo>
Describes the GPU accelerator settings for the current instance type of the Auto Scaling group.
Sourcepub fn recommendation_options(&self) -> &[AutoScalingGroupRecommendationOption]
pub fn recommendation_options(&self) -> &[AutoScalingGroupRecommendationOption]
An array of objects that describe the recommendation options for the Auto Scaling group.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .recommendation_options.is_none()
.
Sourcepub fn last_refresh_timestamp(&self) -> Option<&DateTime>
pub fn last_refresh_timestamp(&self) -> Option<&DateTime>
The timestamp of when the Auto Scaling group recommendation was last generated.
Sourcepub fn current_performance_risk(&self) -> Option<&CurrentPerformanceRisk>
pub fn current_performance_risk(&self) -> Option<&CurrentPerformanceRisk>
The risk of the current Auto Scaling group not meeting the performance needs of its workloads. The higher the risk, the more likely the current Auto Scaling group configuration has insufficient capacity and cannot meet workload requirements.
Sourcepub fn effective_recommendation_preferences(
&self,
) -> Option<&EffectiveRecommendationPreferences>
pub fn effective_recommendation_preferences( &self, ) -> Option<&EffectiveRecommendationPreferences>
An object that describes the effective recommendation preferences for the Auto Scaling group.
Sourcepub fn inferred_workload_types(&self) -> &[InferredWorkloadType]
pub fn inferred_workload_types(&self) -> &[InferredWorkloadType]
The applications that might be running on the instances in the Auto Scaling group as inferred by Compute Optimizer.
Compute Optimizer can infer if one of the following applications might be running on the instances:
-
AmazonEmr
- Infers that Amazon EMR might be running on the instances. -
ApacheCassandra
- Infers that Apache Cassandra might be running on the instances. -
ApacheHadoop
- Infers that Apache Hadoop might be running on the instances. -
Memcached
- Infers that Memcached might be running on the instances. -
NGINX
- Infers that NGINX might be running on the instances. -
PostgreSql
- Infers that PostgreSQL might be running on the instances. -
Redis
- Infers that Redis might be running on the instances. -
Kafka
- Infers that Kafka might be running on the instance. -
SQLServer
- Infers that SQLServer might be running on the instance.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .inferred_workload_types.is_none()
.
Source§impl AutoScalingGroupRecommendation
impl AutoScalingGroupRecommendation
Sourcepub fn builder() -> AutoScalingGroupRecommendationBuilder
pub fn builder() -> AutoScalingGroupRecommendationBuilder
Creates a new builder-style object to manufacture AutoScalingGroupRecommendation
.
Trait Implementations§
Source§impl Clone for AutoScalingGroupRecommendation
impl Clone for AutoScalingGroupRecommendation
Source§fn clone(&self) -> AutoScalingGroupRecommendation
fn clone(&self) -> AutoScalingGroupRecommendation
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl PartialEq for AutoScalingGroupRecommendation
impl PartialEq for AutoScalingGroupRecommendation
Source§fn eq(&self, other: &AutoScalingGroupRecommendation) -> bool
fn eq(&self, other: &AutoScalingGroupRecommendation) -> bool
self
and other
values to be equal, and is used by ==
.impl StructuralPartialEq for AutoScalingGroupRecommendation
Auto Trait Implementations§
impl Freeze for AutoScalingGroupRecommendation
impl RefUnwindSafe for AutoScalingGroupRecommendation
impl Send for AutoScalingGroupRecommendation
impl Sync for AutoScalingGroupRecommendation
impl Unpin for AutoScalingGroupRecommendation
impl UnwindSafe for AutoScalingGroupRecommendation
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);