Struct aws_sdk_comprehend::types::DatasetInputDataConfig
source · #[non_exhaustive]pub struct DatasetInputDataConfig {
pub augmented_manifests: Option<Vec<DatasetAugmentedManifestsListItem>>,
pub data_format: Option<DatasetDataFormat>,
pub document_classifier_input_data_config: Option<DatasetDocumentClassifierInputDataConfig>,
pub entity_recognizer_input_data_config: Option<DatasetEntityRecognizerInputDataConfig>,
}
Expand description
Specifies the format and location of the input data for the dataset.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.augmented_manifests: Option<Vec<DatasetAugmentedManifestsListItem>>
A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.
data_format: Option<DatasetDataFormat>
COMPREHEND_CSV
: The data format is a two-column CSV file, where the first column contains labels and the second column contains documents.
AUGMENTED_MANIFEST
: The data format
document_classifier_input_data_config: Option<DatasetDocumentClassifierInputDataConfig>
The input properties for training a document classifier model.
For more information on how the input file is formatted, see Preparing training data in the Comprehend Developer Guide.
entity_recognizer_input_data_config: Option<DatasetEntityRecognizerInputDataConfig>
The input properties for training an entity recognizer model.
Implementations§
source§impl DatasetInputDataConfig
impl DatasetInputDataConfig
sourcepub fn augmented_manifests(&self) -> &[DatasetAugmentedManifestsListItem]
pub fn augmented_manifests(&self) -> &[DatasetAugmentedManifestsListItem]
A list of augmented manifest files that provide training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .augmented_manifests.is_none()
.
sourcepub fn data_format(&self) -> Option<&DatasetDataFormat>
pub fn data_format(&self) -> Option<&DatasetDataFormat>
COMPREHEND_CSV
: The data format is a two-column CSV file, where the first column contains labels and the second column contains documents.
AUGMENTED_MANIFEST
: The data format
sourcepub fn document_classifier_input_data_config(
&self
) -> Option<&DatasetDocumentClassifierInputDataConfig>
pub fn document_classifier_input_data_config( &self ) -> Option<&DatasetDocumentClassifierInputDataConfig>
The input properties for training a document classifier model.
For more information on how the input file is formatted, see Preparing training data in the Comprehend Developer Guide.
sourcepub fn entity_recognizer_input_data_config(
&self
) -> Option<&DatasetEntityRecognizerInputDataConfig>
pub fn entity_recognizer_input_data_config( &self ) -> Option<&DatasetEntityRecognizerInputDataConfig>
The input properties for training an entity recognizer model.
source§impl DatasetInputDataConfig
impl DatasetInputDataConfig
sourcepub fn builder() -> DatasetInputDataConfigBuilder
pub fn builder() -> DatasetInputDataConfigBuilder
Creates a new builder-style object to manufacture DatasetInputDataConfig
.
Trait Implementations§
source§impl Clone for DatasetInputDataConfig
impl Clone for DatasetInputDataConfig
source§fn clone(&self) -> DatasetInputDataConfig
fn clone(&self) -> DatasetInputDataConfig
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for DatasetInputDataConfig
impl Debug for DatasetInputDataConfig
source§impl PartialEq for DatasetInputDataConfig
impl PartialEq for DatasetInputDataConfig
source§fn eq(&self, other: &DatasetInputDataConfig) -> bool
fn eq(&self, other: &DatasetInputDataConfig) -> bool
self
and other
values to be equal, and is used
by ==
.