#[non_exhaustive]
pub struct AugmentedManifestsListItem { pub s3_uri: Option<String>, pub split: Option<Split>, pub attribute_names: Option<Vec<String>>, pub annotation_data_s3_uri: Option<String>, pub source_documents_s3_uri: Option<String>, pub document_type: Option<AugmentedManifestsDocumentTypeFormat>, }
Expand description

An augmented manifest file that provides training data for your custom model. An augmented manifest file is a labeled dataset that is produced by Amazon SageMaker Ground Truth.

Fields (Non-exhaustive)

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
s3_uri: Option<String>

The Amazon S3 location of the augmented manifest file.

split: Option<Split>

The purpose of the data you've provided in the augmented manifest. You can either train or test this data. If you don't specify, the default is train.

TRAIN - all of the documents in the manifest will be used for training. If no test documents are provided, Amazon Comprehend will automatically reserve a portion of the training documents for testing.

TEST - all of the documents in the manifest will be used for testing.

attribute_names: Option<Vec<String>>

The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job.

If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth.

If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.

annotation_data_s3_uri: Option<String>

The S3 prefix to the annotation files that are referred in the augmented manifest file.

source_documents_s3_uri: Option<String>

The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.

document_type: Option<AugmentedManifestsDocumentTypeFormat>

The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don't specify, the default is PlainTextDocument.

  • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.

  • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.

Implementations

The Amazon S3 location of the augmented manifest file.

The purpose of the data you've provided in the augmented manifest. You can either train or test this data. If you don't specify, the default is train.

TRAIN - all of the documents in the manifest will be used for training. If no test documents are provided, Amazon Comprehend will automatically reserve a portion of the training documents for testing.

TEST - all of the documents in the manifest will be used for testing.

The JSON attribute that contains the annotations for your training documents. The number of attribute names that you specify depends on whether your augmented manifest file is the output of a single labeling job or a chained labeling job.

If your file is the output of a single labeling job, specify the LabelAttributeName key that was used when the job was created in Ground Truth.

If your file is the output of a chained labeling job, specify the LabelAttributeName key for one or more jobs in the chain. Each LabelAttributeName key provides the annotations from an individual job.

The S3 prefix to the annotation files that are referred in the augmented manifest file.

The S3 prefix to the source files (PDFs) that are referred to in the augmented manifest file.

The type of augmented manifest. PlainTextDocument or SemiStructuredDocument. If you don't specify, the default is PlainTextDocument.

  • PLAIN_TEXT_DOCUMENT A document type that represents any unicode text that is encoded in UTF-8.

  • SEMI_STRUCTURED_DOCUMENT A document type with positional and structural context, like a PDF. For training with Amazon Comprehend, only PDFs are supported. For inference, Amazon Comprehend support PDFs, DOCX and TXT.

Creates a new builder-style object to manufacture AugmentedManifestsListItem

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

Uses borrowed data to replace owned data, usually by cloning. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more