#[non_exhaustive]
pub struct Fleet { pub arn: Option<String>, pub name: Option<String>, pub id: Option<String>, pub created: Option<DateTime>, pub last_modified: Option<DateTime>, pub status: Option<FleetStatus>, pub base_capacity: Option<i32>, pub environment_type: Option<EnvironmentType>, pub compute_type: Option<ComputeType>, pub scaling_configuration: Option<ScalingConfigurationOutput>, pub tags: Option<Vec<Tag>>, }
Expand description

A set of dedicated instances for your build environment.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§arn: Option<String>

The ARN of the compute fleet.

§name: Option<String>

The name of the compute fleet.

§id: Option<String>

The ID of the compute fleet.

§created: Option<DateTime>

The time at which the compute fleet was created.

§last_modified: Option<DateTime>

The time at which the compute fleet was last modified.

§status: Option<FleetStatus>

The status of the compute fleet.

§base_capacity: Option<i32>

The initial number of machines allocated to the compute fleet, which defines the number of builds that can run in parallel.

§environment_type: Option<EnvironmentType>

The environment type of the compute fleet.

  • The environment type ARM_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), EU (Ireland), Asia Pacific (Mumbai), Asia Pacific (Tokyo), Asia Pacific (Singapore), Asia Pacific (Sydney), EU (Frankfurt), and South America (São Paulo).

  • The environment type LINUX_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), Asia Pacific (Tokyo), Asia Pacific (Singapore), Asia Pacific (Sydney), South America (São Paulo), and Asia Pacific (Mumbai).

  • The environment type LINUX_GPU_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), Asia Pacific (Tokyo), and Asia Pacific (Sydney).

  • The environment type WINDOWS_SERVER_2019_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), Asia Pacific (Sydney), Asia Pacific (Tokyo), Asia Pacific (Mumbai) and EU (Ireland).

  • The environment type WINDOWS_SERVER_2022_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), Asia Pacific (Sydney), Asia Pacific (Singapore), Asia Pacific (Tokyo), South America (São Paulo) and Asia Pacific (Mumbai).

For more information, see Build environment compute types in the CodeBuild user guide.

§compute_type: Option<ComputeType>

Information about the compute resources the compute fleet uses. Available values include:

  • BUILD_GENERAL1_SMALL: Use up to 3 GB memory and 2 vCPUs for builds.

  • BUILD_GENERAL1_MEDIUM: Use up to 7 GB memory and 4 vCPUs for builds.

  • BUILD_GENERAL1_LARGE: Use up to 16 GB memory and 8 vCPUs for builds, depending on your environment type.

  • BUILD_GENERAL1_XLARGE: Use up to 70 GB memory and 36 vCPUs for builds, depending on your environment type.

  • BUILD_GENERAL1_2XLARGE: Use up to 145 GB memory, 72 vCPUs, and 824 GB of SSD storage for builds. This compute type supports Docker images up to 100 GB uncompressed.

If you use BUILD_GENERAL1_SMALL:

  • For environment type LINUX_CONTAINER, you can use up to 3 GB memory and 2 vCPUs for builds.

  • For environment type LINUX_GPU_CONTAINER, you can use up to 16 GB memory, 4 vCPUs, and 1 NVIDIA A10G Tensor Core GPU for builds.

  • For environment type ARM_CONTAINER, you can use up to 4 GB memory and 2 vCPUs on ARM-based processors for builds.

If you use BUILD_GENERAL1_LARGE:

  • For environment type LINUX_CONTAINER, you can use up to 15 GB memory and 8 vCPUs for builds.

  • For environment type LINUX_GPU_CONTAINER, you can use up to 255 GB memory, 32 vCPUs, and 4 NVIDIA Tesla V100 GPUs for builds.

  • For environment type ARM_CONTAINER, you can use up to 16 GB memory and 8 vCPUs on ARM-based processors for builds.

For more information, see Build environment compute types in the CodeBuild User Guide.

§scaling_configuration: Option<ScalingConfigurationOutput>

The scaling configuration of the compute fleet.

§tags: Option<Vec<Tag>>

A list of tag key and value pairs associated with this compute fleet.

These tags are available for use by Amazon Web Services services that support CodeBuild build project tags.

Implementations§

source§

impl Fleet

source

pub fn arn(&self) -> Option<&str>

The ARN of the compute fleet.

source

pub fn name(&self) -> Option<&str>

The name of the compute fleet.

source

pub fn id(&self) -> Option<&str>

The ID of the compute fleet.

source

pub fn created(&self) -> Option<&DateTime>

The time at which the compute fleet was created.

source

pub fn last_modified(&self) -> Option<&DateTime>

The time at which the compute fleet was last modified.

source

pub fn status(&self) -> Option<&FleetStatus>

The status of the compute fleet.

source

pub fn base_capacity(&self) -> Option<i32>

The initial number of machines allocated to the compute fleet, which defines the number of builds that can run in parallel.

source

pub fn environment_type(&self) -> Option<&EnvironmentType>

The environment type of the compute fleet.

  • The environment type ARM_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), EU (Ireland), Asia Pacific (Mumbai), Asia Pacific (Tokyo), Asia Pacific (Singapore), Asia Pacific (Sydney), EU (Frankfurt), and South America (São Paulo).

  • The environment type LINUX_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), Asia Pacific (Tokyo), Asia Pacific (Singapore), Asia Pacific (Sydney), South America (São Paulo), and Asia Pacific (Mumbai).

  • The environment type LINUX_GPU_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), Asia Pacific (Tokyo), and Asia Pacific (Sydney).

  • The environment type WINDOWS_SERVER_2019_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), Asia Pacific (Sydney), Asia Pacific (Tokyo), Asia Pacific (Mumbai) and EU (Ireland).

  • The environment type WINDOWS_SERVER_2022_CONTAINER is available only in regions US East (N. Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), Asia Pacific (Sydney), Asia Pacific (Singapore), Asia Pacific (Tokyo), South America (São Paulo) and Asia Pacific (Mumbai).

For more information, see Build environment compute types in the CodeBuild user guide.

source

pub fn compute_type(&self) -> Option<&ComputeType>

Information about the compute resources the compute fleet uses. Available values include:

  • BUILD_GENERAL1_SMALL: Use up to 3 GB memory and 2 vCPUs for builds.

  • BUILD_GENERAL1_MEDIUM: Use up to 7 GB memory and 4 vCPUs for builds.

  • BUILD_GENERAL1_LARGE: Use up to 16 GB memory and 8 vCPUs for builds, depending on your environment type.

  • BUILD_GENERAL1_XLARGE: Use up to 70 GB memory and 36 vCPUs for builds, depending on your environment type.

  • BUILD_GENERAL1_2XLARGE: Use up to 145 GB memory, 72 vCPUs, and 824 GB of SSD storage for builds. This compute type supports Docker images up to 100 GB uncompressed.

If you use BUILD_GENERAL1_SMALL:

  • For environment type LINUX_CONTAINER, you can use up to 3 GB memory and 2 vCPUs for builds.

  • For environment type LINUX_GPU_CONTAINER, you can use up to 16 GB memory, 4 vCPUs, and 1 NVIDIA A10G Tensor Core GPU for builds.

  • For environment type ARM_CONTAINER, you can use up to 4 GB memory and 2 vCPUs on ARM-based processors for builds.

If you use BUILD_GENERAL1_LARGE:

  • For environment type LINUX_CONTAINER, you can use up to 15 GB memory and 8 vCPUs for builds.

  • For environment type LINUX_GPU_CONTAINER, you can use up to 255 GB memory, 32 vCPUs, and 4 NVIDIA Tesla V100 GPUs for builds.

  • For environment type ARM_CONTAINER, you can use up to 16 GB memory and 8 vCPUs on ARM-based processors for builds.

For more information, see Build environment compute types in the CodeBuild User Guide.

source

pub fn scaling_configuration(&self) -> Option<&ScalingConfigurationOutput>

The scaling configuration of the compute fleet.

source

pub fn tags(&self) -> &[Tag]

A list of tag key and value pairs associated with this compute fleet.

These tags are available for use by Amazon Web Services services that support CodeBuild build project tags.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .tags.is_none().

source§

impl Fleet

source

pub fn builder() -> FleetBuilder

Creates a new builder-style object to manufacture Fleet.

Trait Implementations§

source§

impl Clone for Fleet

source§

fn clone(&self) -> Fleet

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Fleet

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq for Fleet

source§

fn eq(&self, other: &Fleet) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for Fleet

Auto Trait Implementations§

§

impl RefUnwindSafe for Fleet

§

impl Send for Fleet

§

impl Sync for Fleet

§

impl Unpin for Fleet

§

impl UnwindSafe for Fleet

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more