Struct ResourceRequirement

Source
#[non_exhaustive]
pub struct ResourceRequirement { pub value: Option<String>, pub type: Option<ResourceType>, }
Expand description

The type and amount of a resource to assign to a container. The supported resources include GPU, MEMORY, and VCPU.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§value: Option<String>

The quantity of the specified resource to reserve for the container. The values vary based on the type specified.

type="GPU"

The number of physical GPUs to reserve for the container. Make sure that the number of GPUs reserved for all containers in a job doesn't exceed the number of available GPUs on the compute resource that the job is launched on.

GPUs aren't available for jobs that are running on Fargate resources.

type="MEMORY"

The memory hard limit (in MiB) present to the container. This parameter is supported for jobs that are running on Amazon EC2 resources. If your container attempts to exceed the memory specified, the container is terminated. This parameter maps to Memory in the Create a container section of the Docker Remote API and the --memory option to docker run. You must specify at least 4 MiB of memory for a job. This is required but can be specified in several places for multi-node parallel (MNP) jobs. It must be specified for each node at least once. This parameter maps to Memory in the Create a container section of the Docker Remote API and the --memory option to docker run.

If you're trying to maximize your resource utilization by providing your jobs as much memory as possible for a particular instance type, see Memory management in the Batch User Guide.

For jobs that are running on Fargate resources, then value is the hard limit (in MiB), and must match one of the supported values and the VCPU values must be one of the values supported for that memory value.

value = 512

VCPU = 0.25

value = 1024

VCPU = 0.25 or 0.5

value = 2048

VCPU = 0.25, 0.5, or 1

value = 3072

VCPU = 0.5, or 1

value = 4096

VCPU = 0.5, 1, or 2

value = 5120, 6144, or 7168

VCPU = 1 or 2

value = 8192

VCPU = 1, 2, or 4

value = 9216, 10240, 11264, 12288, 13312, 14336, or 15360

VCPU = 2 or 4

value = 16384

VCPU = 2, 4, or 8

value = 17408, 18432, 19456, 21504, 22528, 23552, 25600, 26624, 27648, 29696, or 30720

VCPU = 4

value = 20480, 24576, or 28672

VCPU = 4 or 8

value = 36864, 45056, 53248, or 61440

VCPU = 8

value = 32768, 40960, 49152, or 57344

VCPU = 8 or 16

value = 65536, 73728, 81920, 90112, 98304, 106496, 114688, or 122880

VCPU = 16

type="VCPU"

The number of vCPUs reserved for the container. This parameter maps to CpuShares in the Create a container section of the Docker Remote API and the --cpu-shares option to docker run. Each vCPU is equivalent to 1,024 CPU shares. For Amazon EC2 resources, you must specify at least one vCPU. This is required but can be specified in several places; it must be specified for each node at least once.

The default for the Fargate On-Demand vCPU resource count quota is 6 vCPUs. For more information about Fargate quotas, see Fargate quotas in the Amazon Web Services General Reference.

For jobs that are running on Fargate resources, then value must match one of the supported values and the MEMORY values must be one of the values supported for that VCPU value. The supported values are 0.25, 0.5, 1, 2, 4, 8, and 16

value = 0.25

MEMORY = 512, 1024, or 2048

value = 0.5

MEMORY = 1024, 2048, 3072, or 4096

value = 1

MEMORY = 2048, 3072, 4096, 5120, 6144, 7168, or 8192

value = 2

MEMORY = 4096, 5120, 6144, 7168, 8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360, or 16384

value = 4

MEMORY = 8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360, 16384, 17408, 18432, 19456, 20480, 21504, 22528, 23552, 24576, 25600, 26624, 27648, 28672, 29696, or 30720

value = 8

MEMORY = 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, or 61440

value = 16

MEMORY = 32768, 40960, 49152, 57344, 65536, 73728, 81920, 90112, 98304, 106496, 114688, or 122880

§type: Option<ResourceType>

The type of resource to assign to a container. The supported resources include GPU, MEMORY, and VCPU.

Implementations§

Source§

impl ResourceRequirement

Source

pub fn value(&self) -> Option<&str>

The quantity of the specified resource to reserve for the container. The values vary based on the type specified.

type="GPU"

The number of physical GPUs to reserve for the container. Make sure that the number of GPUs reserved for all containers in a job doesn't exceed the number of available GPUs on the compute resource that the job is launched on.

GPUs aren't available for jobs that are running on Fargate resources.

type="MEMORY"

The memory hard limit (in MiB) present to the container. This parameter is supported for jobs that are running on Amazon EC2 resources. If your container attempts to exceed the memory specified, the container is terminated. This parameter maps to Memory in the Create a container section of the Docker Remote API and the --memory option to docker run. You must specify at least 4 MiB of memory for a job. This is required but can be specified in several places for multi-node parallel (MNP) jobs. It must be specified for each node at least once. This parameter maps to Memory in the Create a container section of the Docker Remote API and the --memory option to docker run.

If you're trying to maximize your resource utilization by providing your jobs as much memory as possible for a particular instance type, see Memory management in the Batch User Guide.

For jobs that are running on Fargate resources, then value is the hard limit (in MiB), and must match one of the supported values and the VCPU values must be one of the values supported for that memory value.

value = 512

VCPU = 0.25

value = 1024

VCPU = 0.25 or 0.5

value = 2048

VCPU = 0.25, 0.5, or 1

value = 3072

VCPU = 0.5, or 1

value = 4096

VCPU = 0.5, 1, or 2

value = 5120, 6144, or 7168

VCPU = 1 or 2

value = 8192

VCPU = 1, 2, or 4

value = 9216, 10240, 11264, 12288, 13312, 14336, or 15360

VCPU = 2 or 4

value = 16384

VCPU = 2, 4, or 8

value = 17408, 18432, 19456, 21504, 22528, 23552, 25600, 26624, 27648, 29696, or 30720

VCPU = 4

value = 20480, 24576, or 28672

VCPU = 4 or 8

value = 36864, 45056, 53248, or 61440

VCPU = 8

value = 32768, 40960, 49152, or 57344

VCPU = 8 or 16

value = 65536, 73728, 81920, 90112, 98304, 106496, 114688, or 122880

VCPU = 16

type="VCPU"

The number of vCPUs reserved for the container. This parameter maps to CpuShares in the Create a container section of the Docker Remote API and the --cpu-shares option to docker run. Each vCPU is equivalent to 1,024 CPU shares. For Amazon EC2 resources, you must specify at least one vCPU. This is required but can be specified in several places; it must be specified for each node at least once.

The default for the Fargate On-Demand vCPU resource count quota is 6 vCPUs. For more information about Fargate quotas, see Fargate quotas in the Amazon Web Services General Reference.

For jobs that are running on Fargate resources, then value must match one of the supported values and the MEMORY values must be one of the values supported for that VCPU value. The supported values are 0.25, 0.5, 1, 2, 4, 8, and 16

value = 0.25

MEMORY = 512, 1024, or 2048

value = 0.5

MEMORY = 1024, 2048, 3072, or 4096

value = 1

MEMORY = 2048, 3072, 4096, 5120, 6144, 7168, or 8192

value = 2

MEMORY = 4096, 5120, 6144, 7168, 8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360, or 16384

value = 4

MEMORY = 8192, 9216, 10240, 11264, 12288, 13312, 14336, 15360, 16384, 17408, 18432, 19456, 20480, 21504, 22528, 23552, 24576, 25600, 26624, 27648, 28672, 29696, or 30720

value = 8

MEMORY = 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, or 61440

value = 16

MEMORY = 32768, 40960, 49152, 57344, 65536, 73728, 81920, 90112, 98304, 106496, 114688, or 122880

Source

pub fn type(&self) -> Option<&ResourceType>

The type of resource to assign to a container. The supported resources include GPU, MEMORY, and VCPU.

Source§

impl ResourceRequirement

Source

pub fn builder() -> ResourceRequirementBuilder

Creates a new builder-style object to manufacture ResourceRequirement.

Trait Implementations§

Source§

impl Clone for ResourceRequirement

Source§

fn clone(&self) -> ResourceRequirement

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for ResourceRequirement

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for ResourceRequirement

Source§

fn eq(&self, other: &ResourceRequirement) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for ResourceRequirement

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Primary].

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Fixed].

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color :: Rgb].

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Black].

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Red].

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Green].

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Yellow].

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Blue].

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Magenta].

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: Cyan].

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: White].

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlack].

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightRed].

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightGreen].

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightYellow].

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightBlue].

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightCyan].

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color :: BrightWhite].

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Primary].

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Fixed].

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color :: Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Black].

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Red].

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Green].

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Yellow].

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Blue].

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Magenta].

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: Cyan].

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: White].

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlack].

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightRed].

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightGreen].

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightBlue].

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color :: BrightWhite].

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Bold].

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Dim].

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Italic].

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute :: Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute :: RapidBlink].

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Invert].

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Conceal].

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute :: Strike].

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Mask].

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Wrap].

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Linger].

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk :: Clear].

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Resetting].

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: Bright].

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk :: OnBright].

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,