#[non_exhaustive]pub struct ScalingPolicy {
pub policy_arn: String,
pub policy_name: String,
pub service_namespace: ServiceNamespace,
pub resource_id: String,
pub scalable_dimension: ScalableDimension,
pub policy_type: PolicyType,
pub step_scaling_policy_configuration: Option<StepScalingPolicyConfiguration>,
pub target_tracking_scaling_policy_configuration: Option<TargetTrackingScalingPolicyConfiguration>,
pub predictive_scaling_policy_configuration: Option<PredictiveScalingPolicyConfiguration>,
pub alarms: Option<Vec<Alarm>>,
pub creation_time: DateTime,
}
Expand description
Represents a scaling policy to use with Application Auto Scaling.
For more information about configuring scaling policies for a specific service, see Amazon Web Services services that you can use with Application Auto Scaling in the Application Auto Scaling User Guide.
Fields (Non-exhaustive)§
This struct is marked as non-exhaustive
Struct { .. }
syntax; cannot be matched against without a wildcard ..
; and struct update syntax will not work.policy_arn: String
The Amazon Resource Name (ARN) of the scaling policy.
policy_name: String
The name of the scaling policy.
service_namespace: ServiceNamespace
The namespace of the Amazon Web Services service that provides the resource, or a custom-resource
.
resource_id: String
The identifier of the resource associated with the scaling policy. This string consists of the resource type and unique identifier.
-
ECS service - The resource type is
service
and the unique identifier is the cluster name and service name. Example:service/my-cluster/my-service
. -
Spot Fleet - The resource type is
spot-fleet-request
and the unique identifier is the Spot Fleet request ID. Example:spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE
. -
EMR cluster - The resource type is
instancegroup
and the unique identifier is the cluster ID and instance group ID. Example:instancegroup/j-2EEZNYKUA1NTV/ig-1791Y4E1L8YI0
. -
AppStream 2.0 fleet - The resource type is
fleet
and the unique identifier is the fleet name. Example:fleet/sample-fleet
. -
DynamoDB table - The resource type is
table
and the unique identifier is the table name. Example:table/my-table
. -
DynamoDB global secondary index - The resource type is
index
and the unique identifier is the index name. Example:table/my-table/index/my-table-index
. -
Aurora DB cluster - The resource type is
cluster
and the unique identifier is the cluster name. Example:cluster:my-db-cluster
. -
SageMaker endpoint variant - The resource type is
variant
and the unique identifier is the resource ID. Example:endpoint/my-end-point/variant/KMeansClustering
. -
Custom resources are not supported with a resource type. This parameter must specify the
OutputValue
from the CloudFormation template stack used to access the resources. The unique identifier is defined by the service provider. More information is available in our GitHub repository. -
Amazon Comprehend document classification endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example:
arn:aws:comprehend:us-west-2:123456789012:document-classifier-endpoint/EXAMPLE
. -
Amazon Comprehend entity recognizer endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example:
arn:aws:comprehend:us-west-2:123456789012:entity-recognizer-endpoint/EXAMPLE
. -
Lambda provisioned concurrency - The resource type is
function
and the unique identifier is the function name with a function version or alias name suffix that is not$LATEST
. Example:function:my-function:prod
orfunction:my-function:1
. -
Amazon Keyspaces table - The resource type is
table
and the unique identifier is the table name. Example:keyspace/mykeyspace/table/mytable
. -
Amazon MSK cluster - The resource type and unique identifier are specified using the cluster ARN. Example:
arn:aws:kafka:us-east-1:123456789012:cluster/demo-cluster-1/6357e0b2-0e6a-4b86-a0b4-70df934c2e31-5
. -
Amazon ElastiCache replication group - The resource type is
replication-group
and the unique identifier is the replication group name. Example:replication-group/mycluster
. -
Amazon ElastiCache cache cluster - The resource type is
cache-cluster
and the unique identifier is the cache cluster name. Example:cache-cluster/mycluster
. -
Neptune cluster - The resource type is
cluster
and the unique identifier is the cluster name. Example:cluster:mycluster
. -
SageMaker serverless endpoint - The resource type is
variant
and the unique identifier is the resource ID. Example:endpoint/my-end-point/variant/KMeansClustering
. -
SageMaker inference component - The resource type is
inference-component
and the unique identifier is the resource ID. Example:inference-component/my-inference-component
. -
Pool of WorkSpaces - The resource type is
workspacespool
and the unique identifier is the pool ID. Example:workspacespool/wspool-123456
.
scalable_dimension: ScalableDimension
The scalable dimension. This string consists of the service namespace, resource type, and scaling property.
-
ecs:service:DesiredCount
- The task count of an ECS service. -
elasticmapreduce:instancegroup:InstanceCount
- The instance count of an EMR Instance Group. -
ec2:spot-fleet-request:TargetCapacity
- The target capacity of a Spot Fleet. -
appstream:fleet:DesiredCapacity
- The capacity of an AppStream 2.0 fleet. -
dynamodb:table:ReadCapacityUnits
- The provisioned read capacity for a DynamoDB table. -
dynamodb:table:WriteCapacityUnits
- The provisioned write capacity for a DynamoDB table. -
dynamodb:index:ReadCapacityUnits
- The provisioned read capacity for a DynamoDB global secondary index. -
dynamodb:index:WriteCapacityUnits
- The provisioned write capacity for a DynamoDB global secondary index. -
rds:cluster:ReadReplicaCount
- The count of Aurora Replicas in an Aurora DB cluster. Available for Aurora MySQL-compatible edition and Aurora PostgreSQL-compatible edition. -
sagemaker:variant:DesiredInstanceCount
- The number of EC2 instances for a SageMaker model endpoint variant. -
custom-resource:ResourceType:Property
- The scalable dimension for a custom resource provided by your own application or service. -
comprehend:document-classifier-endpoint:DesiredInferenceUnits
- The number of inference units for an Amazon Comprehend document classification endpoint. -
comprehend:entity-recognizer-endpoint:DesiredInferenceUnits
- The number of inference units for an Amazon Comprehend entity recognizer endpoint. -
lambda:function:ProvisionedConcurrency
- The provisioned concurrency for a Lambda function. -
cassandra:table:ReadCapacityUnits
- The provisioned read capacity for an Amazon Keyspaces table. -
cassandra:table:WriteCapacityUnits
- The provisioned write capacity for an Amazon Keyspaces table. -
kafka:broker-storage:VolumeSize
- The provisioned volume size (in GiB) for brokers in an Amazon MSK cluster. -
elasticache:cache-cluster:Nodes
- The number of nodes for an Amazon ElastiCache cache cluster. -
elasticache:replication-group:NodeGroups
- The number of node groups for an Amazon ElastiCache replication group. -
elasticache:replication-group:Replicas
- The number of replicas per node group for an Amazon ElastiCache replication group. -
neptune:cluster:ReadReplicaCount
- The count of read replicas in an Amazon Neptune DB cluster. -
sagemaker:variant:DesiredProvisionedConcurrency
- The provisioned concurrency for a SageMaker serverless endpoint. -
sagemaker:inference-component:DesiredCopyCount
- The number of copies across an endpoint for a SageMaker inference component. -
workspaces:workspacespool:DesiredUserSessions
- The number of user sessions for the WorkSpaces in the pool.
policy_type: PolicyType
The scaling policy type.
The following policy types are supported:
TargetTrackingScaling
—Not supported for Amazon EMR
StepScaling
—Not supported for DynamoDB, Amazon Comprehend, Lambda, Amazon Keyspaces, Amazon MSK, Amazon ElastiCache, or Neptune.
PredictiveScaling
—Only supported for Amazon ECS
step_scaling_policy_configuration: Option<StepScalingPolicyConfiguration>
A step scaling policy.
target_tracking_scaling_policy_configuration: Option<TargetTrackingScalingPolicyConfiguration>
A target tracking scaling policy.
predictive_scaling_policy_configuration: Option<PredictiveScalingPolicyConfiguration>
The predictive scaling policy configuration.
alarms: Option<Vec<Alarm>>
The CloudWatch alarms associated with the scaling policy.
creation_time: DateTime
The Unix timestamp for when the scaling policy was created.
Implementations§
Source§impl ScalingPolicy
impl ScalingPolicy
Sourcepub fn policy_arn(&self) -> &str
pub fn policy_arn(&self) -> &str
The Amazon Resource Name (ARN) of the scaling policy.
Sourcepub fn policy_name(&self) -> &str
pub fn policy_name(&self) -> &str
The name of the scaling policy.
Sourcepub fn service_namespace(&self) -> &ServiceNamespace
pub fn service_namespace(&self) -> &ServiceNamespace
The namespace of the Amazon Web Services service that provides the resource, or a custom-resource
.
Sourcepub fn resource_id(&self) -> &str
pub fn resource_id(&self) -> &str
The identifier of the resource associated with the scaling policy. This string consists of the resource type and unique identifier.
-
ECS service - The resource type is
service
and the unique identifier is the cluster name and service name. Example:service/my-cluster/my-service
. -
Spot Fleet - The resource type is
spot-fleet-request
and the unique identifier is the Spot Fleet request ID. Example:spot-fleet-request/sfr-73fbd2ce-aa30-494c-8788-1cee4EXAMPLE
. -
EMR cluster - The resource type is
instancegroup
and the unique identifier is the cluster ID and instance group ID. Example:instancegroup/j-2EEZNYKUA1NTV/ig-1791Y4E1L8YI0
. -
AppStream 2.0 fleet - The resource type is
fleet
and the unique identifier is the fleet name. Example:fleet/sample-fleet
. -
DynamoDB table - The resource type is
table
and the unique identifier is the table name. Example:table/my-table
. -
DynamoDB global secondary index - The resource type is
index
and the unique identifier is the index name. Example:table/my-table/index/my-table-index
. -
Aurora DB cluster - The resource type is
cluster
and the unique identifier is the cluster name. Example:cluster:my-db-cluster
. -
SageMaker endpoint variant - The resource type is
variant
and the unique identifier is the resource ID. Example:endpoint/my-end-point/variant/KMeansClustering
. -
Custom resources are not supported with a resource type. This parameter must specify the
OutputValue
from the CloudFormation template stack used to access the resources. The unique identifier is defined by the service provider. More information is available in our GitHub repository. -
Amazon Comprehend document classification endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example:
arn:aws:comprehend:us-west-2:123456789012:document-classifier-endpoint/EXAMPLE
. -
Amazon Comprehend entity recognizer endpoint - The resource type and unique identifier are specified using the endpoint ARN. Example:
arn:aws:comprehend:us-west-2:123456789012:entity-recognizer-endpoint/EXAMPLE
. -
Lambda provisioned concurrency - The resource type is
function
and the unique identifier is the function name with a function version or alias name suffix that is not$LATEST
. Example:function:my-function:prod
orfunction:my-function:1
. -
Amazon Keyspaces table - The resource type is
table
and the unique identifier is the table name. Example:keyspace/mykeyspace/table/mytable
. -
Amazon MSK cluster - The resource type and unique identifier are specified using the cluster ARN. Example:
arn:aws:kafka:us-east-1:123456789012:cluster/demo-cluster-1/6357e0b2-0e6a-4b86-a0b4-70df934c2e31-5
. -
Amazon ElastiCache replication group - The resource type is
replication-group
and the unique identifier is the replication group name. Example:replication-group/mycluster
. -
Amazon ElastiCache cache cluster - The resource type is
cache-cluster
and the unique identifier is the cache cluster name. Example:cache-cluster/mycluster
. -
Neptune cluster - The resource type is
cluster
and the unique identifier is the cluster name. Example:cluster:mycluster
. -
SageMaker serverless endpoint - The resource type is
variant
and the unique identifier is the resource ID. Example:endpoint/my-end-point/variant/KMeansClustering
. -
SageMaker inference component - The resource type is
inference-component
and the unique identifier is the resource ID. Example:inference-component/my-inference-component
. -
Pool of WorkSpaces - The resource type is
workspacespool
and the unique identifier is the pool ID. Example:workspacespool/wspool-123456
.
Sourcepub fn scalable_dimension(&self) -> &ScalableDimension
pub fn scalable_dimension(&self) -> &ScalableDimension
The scalable dimension. This string consists of the service namespace, resource type, and scaling property.
-
ecs:service:DesiredCount
- The task count of an ECS service. -
elasticmapreduce:instancegroup:InstanceCount
- The instance count of an EMR Instance Group. -
ec2:spot-fleet-request:TargetCapacity
- The target capacity of a Spot Fleet. -
appstream:fleet:DesiredCapacity
- The capacity of an AppStream 2.0 fleet. -
dynamodb:table:ReadCapacityUnits
- The provisioned read capacity for a DynamoDB table. -
dynamodb:table:WriteCapacityUnits
- The provisioned write capacity for a DynamoDB table. -
dynamodb:index:ReadCapacityUnits
- The provisioned read capacity for a DynamoDB global secondary index. -
dynamodb:index:WriteCapacityUnits
- The provisioned write capacity for a DynamoDB global secondary index. -
rds:cluster:ReadReplicaCount
- The count of Aurora Replicas in an Aurora DB cluster. Available for Aurora MySQL-compatible edition and Aurora PostgreSQL-compatible edition. -
sagemaker:variant:DesiredInstanceCount
- The number of EC2 instances for a SageMaker model endpoint variant. -
custom-resource:ResourceType:Property
- The scalable dimension for a custom resource provided by your own application or service. -
comprehend:document-classifier-endpoint:DesiredInferenceUnits
- The number of inference units for an Amazon Comprehend document classification endpoint. -
comprehend:entity-recognizer-endpoint:DesiredInferenceUnits
- The number of inference units for an Amazon Comprehend entity recognizer endpoint. -
lambda:function:ProvisionedConcurrency
- The provisioned concurrency for a Lambda function. -
cassandra:table:ReadCapacityUnits
- The provisioned read capacity for an Amazon Keyspaces table. -
cassandra:table:WriteCapacityUnits
- The provisioned write capacity for an Amazon Keyspaces table. -
kafka:broker-storage:VolumeSize
- The provisioned volume size (in GiB) for brokers in an Amazon MSK cluster. -
elasticache:cache-cluster:Nodes
- The number of nodes for an Amazon ElastiCache cache cluster. -
elasticache:replication-group:NodeGroups
- The number of node groups for an Amazon ElastiCache replication group. -
elasticache:replication-group:Replicas
- The number of replicas per node group for an Amazon ElastiCache replication group. -
neptune:cluster:ReadReplicaCount
- The count of read replicas in an Amazon Neptune DB cluster. -
sagemaker:variant:DesiredProvisionedConcurrency
- The provisioned concurrency for a SageMaker serverless endpoint. -
sagemaker:inference-component:DesiredCopyCount
- The number of copies across an endpoint for a SageMaker inference component. -
workspaces:workspacespool:DesiredUserSessions
- The number of user sessions for the WorkSpaces in the pool.
Sourcepub fn policy_type(&self) -> &PolicyType
pub fn policy_type(&self) -> &PolicyType
The scaling policy type.
The following policy types are supported:
TargetTrackingScaling
—Not supported for Amazon EMR
StepScaling
—Not supported for DynamoDB, Amazon Comprehend, Lambda, Amazon Keyspaces, Amazon MSK, Amazon ElastiCache, or Neptune.
PredictiveScaling
—Only supported for Amazon ECS
Sourcepub fn step_scaling_policy_configuration(
&self,
) -> Option<&StepScalingPolicyConfiguration>
pub fn step_scaling_policy_configuration( &self, ) -> Option<&StepScalingPolicyConfiguration>
A step scaling policy.
Sourcepub fn target_tracking_scaling_policy_configuration(
&self,
) -> Option<&TargetTrackingScalingPolicyConfiguration>
pub fn target_tracking_scaling_policy_configuration( &self, ) -> Option<&TargetTrackingScalingPolicyConfiguration>
A target tracking scaling policy.
Sourcepub fn predictive_scaling_policy_configuration(
&self,
) -> Option<&PredictiveScalingPolicyConfiguration>
pub fn predictive_scaling_policy_configuration( &self, ) -> Option<&PredictiveScalingPolicyConfiguration>
The predictive scaling policy configuration.
Sourcepub fn alarms(&self) -> &[Alarm]
pub fn alarms(&self) -> &[Alarm]
The CloudWatch alarms associated with the scaling policy.
If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .alarms.is_none()
.
Sourcepub fn creation_time(&self) -> &DateTime
pub fn creation_time(&self) -> &DateTime
The Unix timestamp for when the scaling policy was created.
Source§impl ScalingPolicy
impl ScalingPolicy
Sourcepub fn builder() -> ScalingPolicyBuilder
pub fn builder() -> ScalingPolicyBuilder
Creates a new builder-style object to manufacture ScalingPolicy
.
Trait Implementations§
Source§impl Clone for ScalingPolicy
impl Clone for ScalingPolicy
Source§fn clone(&self) -> ScalingPolicy
fn clone(&self) -> ScalingPolicy
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for ScalingPolicy
impl Debug for ScalingPolicy
Source§impl PartialEq for ScalingPolicy
impl PartialEq for ScalingPolicy
impl StructuralPartialEq for ScalingPolicy
Auto Trait Implementations§
impl Freeze for ScalingPolicy
impl RefUnwindSafe for ScalingPolicy
impl Send for ScalingPolicy
impl Sync for ScalingPolicy
impl Unpin for ScalingPolicy
impl UnwindSafe for ScalingPolicy
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
Source§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
Source§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
Source§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
Source§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
Source§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
Source§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
Source§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
Source§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
Source§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
Source§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
Source§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
Source§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
Source§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
Source§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
Source§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
Source§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
Source§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
Source§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
Source§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
Source§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
Source§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling Attribute
value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
Source§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
Source§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
Quirk
value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
Source§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.Source§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the Condition
value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);