Struct Client

Source
pub struct Client { /* private fields */ }

Implementations§

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source§

impl Client

Source

pub fn resolve_attributes(&self) -> ResolveAttributesFluentBuilder

Examples found in repository?
examples/searchableencryption/compound_beacon_searchable_encryption.rs (line 240)
60pub async fn put_and_query_with_beacon(branch_key_id: &str) -> Result<(), crate::BoxError> {
61    let ddb_table_name = test_utils::UNIT_INSPECTION_TEST_DDB_TABLE_NAME;
62    let branch_key_wrapping_kms_key_arn = test_utils::TEST_BRANCH_KEY_WRAPPING_KMS_KEY_ARN;
63    let branch_key_ddb_table_name = test_utils::TEST_BRANCH_KEYSTORE_DDB_TABLE_NAME;
64
65    // 1. Create Beacons.
66    //    These are the same beacons as in the "BasicSearchableEncryptionExample" in this directory.
67    //    See that file to see details on beacon construction and parameters.
68    //    While we will not directly query against these beacons,
69    //      you must create standard beacons on encrypted fields
70    //      that we wish to use in compound beacons.
71    let last4_beacon = StandardBeacon::builder()
72        .name("inspector_id_last4")
73        .length(10)
74        .build()?;
75
76    let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;
77
78    let standard_beacon_list = vec![last4_beacon, unit_beacon];
79
80    // 2. Define encrypted parts.
81    //    Encrypted parts define the beacons that can be used to construct a compound beacon,
82    //        and how the compound beacon prefixes those beacon values.
83
84    // A encrypted part must receive:
85    //  - name: Name of a standard beacon
86    //  - prefix: Any string. This is plaintext that prefixes the beaconized value in the compound beacon.
87    //            Prefixes must be unique across the configuration, and must not be a prefix of another prefix;
88    //            i.e. for all configured prefixes, the first N characters of a prefix must not equal another prefix.
89    // In practice, it is suggested to have a short value distinguishable from other parts served on the prefix.
90    // For this example, we will choose "L-" as the prefix for "Last 4 digits of inspector ID".
91    // With this prefix and the standard beacon's bit length definition (10), the beaconized
92    //     version of the inspector ID's last 4 digits will appear as
93    //     `L-000` to `L-3ff` inside a compound beacon.
94
95    // For this example, we will choose "U-" as the prefix for "unit".
96    // With this prefix and the standard beacon's bit length definition (30), a unit beacon will appear
97    //     as `U-00000000` to `U-3fffffff` inside a compound beacon.
98    let encrypted_parts_list = vec![
99        EncryptedPart::builder()
100            .name("inspector_id_last4")
101            .prefix("L-")
102            .build()?,
103        EncryptedPart::builder().name("unit").prefix("U-").build()?,
104    ];
105
106    // 3. Define compound beacon.
107    //    A compound beacon allows one to serve multiple beacons or attributes from a single index.
108    //    A compound beacon must receive:
109    //     - name: The name of the beacon. Compound beacon values will be written to `aws_ddb_e_[name]`.
110    //     - split: A character separating parts in a compound beacon
111    //    A compound beacon may also receive:
112    //     - encrypted: A list of encrypted parts. This is effectively a list of beacons. We provide the list
113    //                  that we created above.
114    //     - constructors: A list of constructors. This is an ordered list of possible ways to create a beacon.
115    //                     We have not defined any constructors here; see the complex example for how to do this.
116    //                     The client will provide a default constructor, which will write a compound beacon as:
117    //                     all signed parts in the order they are added to the signed list;
118    //                     all encrypted parts in order they are added to the encrypted list; all parts required.
119    //                     In this example, we expect compound beacons to be written as
120    //                     `L-XXX.U-YYYYYYYY`, since our encrypted list looks like
121    //                     [last4EncryptedPart, unitEncryptedPart].
122    //     - signed: A list of signed parts, i.e. plaintext attributes. This would be provided if we
123    //                     wanted to use plaintext values as part of constructing our compound beacon. We do not
124    //                     provide this here; see the Complex example for an example.
125    let compound_beacon_list = vec![CompoundBeacon::builder()
126        .name("last4UnitCompound")
127        .split(".")
128        .encrypted(encrypted_parts_list)
129        .build()?];
130
131    // 4. Configure the Keystore
132    //    These are the same constructions as in the Basic example, which describes these in more detail.
133
134    let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
135    let key_store_config = KeyStoreConfig::builder()
136        .kms_client(aws_sdk_kms::Client::new(&sdk_config))
137        .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
138        .ddb_table_name(branch_key_ddb_table_name)
139        .logical_key_store_name(branch_key_ddb_table_name)
140        .kms_configuration(KmsConfiguration::KmsKeyArn(
141            branch_key_wrapping_kms_key_arn.to_string(),
142        ))
143        .build()?;
144
145    let key_store = keystore_client::Client::from_conf(key_store_config)?;
146
147    // 5. Create BeaconVersion.
148    //    This is similar to the Basic example, except we have also provided a compoundBeaconList.
149    //    We must also continue to provide all of the standard beacons that compose a compound beacon list.
150    let beacon_version = BeaconVersion::builder()
151        .standard_beacons(standard_beacon_list)
152        .compound_beacons(compound_beacon_list)
153        .version(1) // MUST be 1
154        .key_store(key_store.clone())
155        .key_source(BeaconKeySource::Single(
156            SingleKeyStore::builder()
157                // `keyId` references a beacon key.
158                // For every branch key we create in the keystore,
159                // we also create a beacon key.
160                // This beacon key is not the same as the branch key,
161                // but is created with the same ID as the branch key.
162                .key_id(branch_key_id)
163                .cache_ttl(6000)
164                .build()?,
165        ))
166        .build()?;
167    let beacon_versions = vec![beacon_version];
168
169    // 6. Create a Hierarchical Keyring
170    //    This is the same configuration as in the Basic example.
171
172    let mpl_config = MaterialProvidersConfig::builder().build()?;
173    let mpl = mpl_client::Client::from_conf(mpl_config)?;
174    let kms_keyring = mpl
175        .create_aws_kms_hierarchical_keyring()
176        .branch_key_id(branch_key_id)
177        .key_store(key_store)
178        .ttl_seconds(6000)
179        .send()
180        .await?;
181
182    // 7. Configure which attributes are encrypted and/or signed when writing new items.
183    let attribute_actions_on_encrypt = HashMap::from([
184        ("work_id".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
185        ("inspection_date".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
186        (
187            "inspector_id_last4".to_string(),
188            CryptoAction::EncryptAndSign,
189        ), // Beaconized attributes must be encrypted
190        ("unit".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
191    ]);
192
193    // We do not need to define a crypto action on last4UnitCompound.
194    // We only need to define crypto actions on attributes that we pass to PutItem.
195
196    // 8. Create the DynamoDb Encryption configuration for the table we will be writing to.
197    //    The beaconVersions are added to the search configuration.
198    let table_config = DynamoDbTableEncryptionConfig::builder()
199        .logical_table_name(ddb_table_name)
200        .partition_key_name("work_id")
201        .sort_key_name("inspection_date")
202        .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
203        .keyring(kms_keyring)
204        .search(
205            SearchConfig::builder()
206                .write_version(1) // MUST be 1
207                .versions(beacon_versions)
208                .build()?,
209        )
210        .build()?;
211
212    // 9. Create config
213    let encryption_config = DynamoDbTablesEncryptionConfig::builder()
214        .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
215        .build()?;
216
217    // 10. Create an item with both attributes used in the compound beacon.
218    let item = HashMap::from([
219        (
220            "work_id".to_string(),
221            AttributeValue::S("9ce39272-8068-4efd-a211-cd162ad65d4c".to_string()),
222        ),
223        (
224            "inspection_date".to_string(),
225            AttributeValue::S("2023-06-13".to_string()),
226        ),
227        (
228            "inspector_id_last4".to_string(),
229            AttributeValue::S("5678".to_string()),
230        ),
231        (
232            "unit".to_string(),
233            AttributeValue::S("011899988199".to_string()),
234        ),
235    ]);
236
237    // 11. If developing or debugging, verify config by checking compound beacon values directly
238    let trans = transform_client::Client::from_conf(encryption_config.clone())?;
239    let resolve_output = trans
240        .resolve_attributes()
241        .table_name(ddb_table_name)
242        .item(item.clone())
243        .version(1)
244        .send()
245        .await?;
246
247    // Verify that there are no virtual fields
248    assert_eq!(resolve_output.virtual_fields.unwrap().len(), 0);
249
250    // Verify that CompoundBeacons has the expected value
251    let compound_beacons = resolve_output.compound_beacons.unwrap();
252    assert_eq!(compound_beacons.len(), 1);
253    assert_eq!(
254        compound_beacons["last4UnitCompound"],
255        "L-5678.U-011899988199"
256    );
257    // Note : the compound beacon actually stored in the table is not "L-5678.U-011899988199"
258    // but rather something like "L-abc.U-123", as both parts are EncryptedParts
259    // and therefore the text is replaced by the associated beacon
260
261    // 12. Create a new AWS SDK DynamoDb client using the DynamoDb Encryption Interceptor above
262    let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
263        .interceptor(DbEsdkInterceptor::new(encryption_config)?)
264        .build();
265    let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
266
267    // 13. Write the item to the table
268    ddb.put_item()
269        .table_name(ddb_table_name)
270        .set_item(Some(item.clone()))
271        .send()
272        .await?;
273
274    // 14. Query for the item we just put.
275    let expression_attribute_values = HashMap::from([
276        // This query expression takes a few factors into consideration:
277        //  - The configured prefix for the last 4 digits of an inspector ID is "L-";
278        //    the prefix for the unit is "U-"
279        //  - The configured split character, separating component parts, is "."
280        //  - The default constructor adds encrypted parts in the order they are in the encrypted list, which
281        //    configures `last4` to come before `unit``
282        // NOTE: We did not need to create a compound beacon for this query. This query could have also been
283        //       done by querying on the partition and sort key, as was done in the Basic example.
284        //       This is intended to be a simple example to demonstrate how one might set up a compound beacon.
285        //       For examples where compound beacons are required, see the Complex example.
286        //       The most basic extension to this example that would require a compound beacon would add a third
287        //       part to the compound beacon, then query against three parts.
288        (
289            ":value".to_string(),
290            AttributeValue::S("L-5678.U-011899988199".to_string()),
291        ),
292    ]);
293
294    // GSIs are sometimes a little bit delayed, so we retry if the query comes up empty.
295    for _i in 0..10 {
296        let query_response = ddb
297            .query()
298            .table_name(ddb_table_name)
299            .index_name(GSI_NAME)
300            .key_condition_expression("last4UnitCompound = :value")
301            .set_expression_attribute_values(Some(expression_attribute_values.clone()))
302            .send()
303            .await?;
304
305        // if no results, sleep and try again
306        if query_response.items.is_none() || query_response.items.as_ref().unwrap().is_empty() {
307            std::thread::sleep(std::time::Duration::from_millis(20));
308            continue;
309        }
310
311        let attribute_values = query_response.items.unwrap();
312        // Validate only 1 item was returned: the item we just put
313        assert_eq!(attribute_values.len(), 1);
314        let returned_item = &attribute_values[0];
315        // Validate the item has the expected attributes
316        assert_eq!(
317            returned_item["inspector_id_last4"],
318            AttributeValue::S("5678".to_string())
319        );
320        assert_eq!(
321            returned_item["unit"],
322            AttributeValue::S("011899988199".to_string())
323        );
324        break;
325    }
326    println!("compound_beacon_searchable_encryption successful.");
327    Ok(())
328}
More examples
Hide additional examples
examples/searchableencryption/virtual_beacon_searchable_encryption.rs (line 336)
119pub async fn put_and_query_with_beacon(branch_key_id: &str) -> Result<(), crate::BoxError> {
120    let ddb_table_name = test_utils::SIMPLE_BEACON_TEST_DDB_TABLE_NAME;
121    let branch_key_wrapping_kms_key_arn = test_utils::TEST_BRANCH_KEY_WRAPPING_KMS_KEY_ARN;
122    let branch_key_ddb_table_name = test_utils::TEST_BRANCH_KEYSTORE_DDB_TABLE_NAME;
123
124    // 1. Construct a length-1 prefix virtual transform.
125    //    `hasTestResult` is a binary attribute, containing either `true` or `false`.
126    //    As an example to demonstrate virtual transforms, we will truncate the value
127    //    of `hasTestResult` in the virtual field to the length-1 prefix of the binary value, i.e.:
128    //     - "true" -> "t"
129    //     - "false -> "f"
130    //    This is not necessary. This is done as a demonstration of virtual transforms.
131    //    Virtual transform operations treat all attributes as strings
132    //    (i.e. the boolean value `true` is interpreted as a string "true"),
133    //    so its length-1 prefix is just "t".
134
135    let length1_prefix_virtual_transform_list = vec![VirtualTransform::Prefix(
136        GetPrefix::builder().length(1).build()?,
137    )];
138
139    // 2. Construct the VirtualParts required for the VirtualField
140    let has_test_result_part = VirtualPart::builder()
141        .loc("hasTestResult")
142        .trans(length1_prefix_virtual_transform_list)
143        .build()?;
144
145    let state_part = VirtualPart::builder().loc("state").build()?;
146    // Note that we do not apply any transform to the `state` attribute,
147    // and the virtual field will read in the attribute as-is.
148
149    // 3. Construct the VirtualField from the VirtualParts
150    //    Note that the order that virtual parts are added to the virtualPartList
151    //    dictates the order in which they are concatenated to build the virtual field.
152    //    You must add virtual parts in the same order on write as you do on read.
153    let virtual_part_list = vec![state_part, has_test_result_part];
154
155    let state_and_has_test_result_field = VirtualField::builder()
156        .name("stateAndHasTestResult")
157        .parts(virtual_part_list)
158        .build()?;
159
160    let virtual_field_list = vec![state_and_has_test_result_field];
161
162    // 4. Configure our beacon.
163    //    The virtual field is assumed to hold a US 2-letter state abbreviation
164    //    (56 possible values = 50 states + 6 territories) concatenated with a binary attribute
165    //    (2 possible values: true/false hasTestResult field), we expect a population size of
166    //    56 * 2 = 112 possible values.
167    //    We will also assume that these values are reasonably well-distributed across
168    //    customer IDs. In practice, this will not be true. We would expect
169    //    more populous states to appear more frequently in the database.
170    //    A more complex analysis would show that a stricter upper bound
171    //    is necessary to account for this by hiding information from the
172    //    underlying distribution.
173    //
174    //    This link provides guidance for choosing a beacon length:
175    //       https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/choosing-beacon-length.html
176    //    We follow the guidance in the link above to determine reasonable bounds for beacon length:
177    //     - min: log(sqrt(112))/log(2) ~= 3.4, round down to 3
178    //     - max: log((112/2))/log(2) ~= 5.8, round up to 6
179    //    You will somehow need to round results to a nearby integer.
180    //    We choose to round to the nearest integer; you might consider a different rounding approach.
181    //    Rounding up will return fewer expected "false positives" in queries,
182    //       leading to fewer decrypt calls and better performance,
183    //       but it is easier to identify which beacon values encode distinct plaintexts.
184    //    Rounding down will return more expected "false positives" in queries,
185    //       leading to more decrypt calls and worse performance,
186    //       but it is harder to identify which beacon values encode distinct plaintexts.
187    //    We can choose a beacon length between 3 and 6:
188    //     - Closer to 3, we expect more "false positives" to be returned,
189    //       making it harder to identify which beacon values encode distinct plaintexts,
190    //       but leading to more decrypt calls and worse performance
191    //     - Closer to 6, we expect fewer "false positives" returned in queries,
192    //       leading to fewer decrypt calls and better performance,
193    //       but it is easier to identify which beacon values encode distinct plaintexts.
194    //    As an example, we will choose 5.
195    //    Values stored in aws_dbe_b_stateAndHasTestResult will be 5 bits long (0x00 - 0x1f)
196    //    There will be 2^5 = 32 possible HMAC values.
197    //    With a well-distributed dataset (112 values), for a particular beacon we expect
198    //    (112/32) = 3.5 combinations of abbreviation + true/false attribute
199    //    sharing that beacon value.
200    let standard_beacon_list = vec![StandardBeacon::builder()
201        .name("stateAndHasTestResult")
202        .length(5)
203        .build()?];
204
205    // 5. Configure Keystore.
206    //    This example expects that you have already set up a KeyStore with a single branch key.
207    //    See the "CreateKeyStoreTableExample" and "CreateKeyStoreKeyExample" files for how to do this.
208    //    After you create a branch key, you should persist its ID for use in this example.
209    let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
210    let key_store_config = KeyStoreConfig::builder()
211        .kms_client(aws_sdk_kms::Client::new(&sdk_config))
212        .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
213        .ddb_table_name(branch_key_ddb_table_name)
214        .logical_key_store_name(branch_key_ddb_table_name)
215        .kms_configuration(KmsConfiguration::KmsKeyArn(
216            branch_key_wrapping_kms_key_arn.to_string(),
217        ))
218        .build()?;
219
220    let key_store = keystore_client::Client::from_conf(key_store_config)?;
221
222    // 6. Create BeaconVersion.
223    //    The BeaconVersion inside the list holds the list of beacons on the table.
224    //    The BeaconVersion also stores information about the keystore.
225    //    BeaconVersion must be provided:
226    //      - keyStore: The keystore configured in the previous step.
227    //      - keySource: A configuration for the key source.
228    //        For simple use cases, we can configure a 'singleKeySource' which
229    //        statically configures a single beaconKey. That is the approach this example takes.
230    //        For use cases where you want to use different beacon keys depending on the data
231    //        (for example if your table holds data for multiple tenants, and you want to use
232    //        a different beacon key per tenant), look into configuring a MultiKeyStore:
233    //          https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-encryption-multitenant.html
234    //    We also provide our standard beacon list and virtual fields here.
235    let beacon_version = BeaconVersion::builder()
236        .standard_beacons(standard_beacon_list)
237        .virtual_fields(virtual_field_list)
238        .version(1) // MUST be 1
239        .key_store(key_store.clone())
240        .key_source(BeaconKeySource::Single(
241            SingleKeyStore::builder()
242                // `keyId` references a beacon key.
243                // For every branch key we create in the keystore,
244                // we also create a beacon key.
245                // This beacon key is not the same as the branch key,
246                // but is created with the same ID as the branch key.
247                .key_id(branch_key_id)
248                .cache_ttl(6000)
249                .build()?,
250        ))
251        .build()?;
252    let beacon_versions = vec![beacon_version];
253
254    // 7. Create a Hierarchical Keyring
255    //    This is a KMS keyring that utilizes the keystore table.
256    //    This config defines how items are encrypted and decrypted.
257    //    NOTE: You should configure this to use the same keystore as your search config.
258    let mpl_config = MaterialProvidersConfig::builder().build()?;
259    let mpl = mpl_client::Client::from_conf(mpl_config)?;
260    let kms_keyring = mpl
261        .create_aws_kms_hierarchical_keyring()
262        .branch_key_id(branch_key_id)
263        .key_store(key_store)
264        .ttl_seconds(6000)
265        .send()
266        .await?;
267
268    // 8. Configure which attributes are encrypted and/or signed when writing new items.
269    //    For each attribute that may exist on the items we plan to write to our DynamoDbTable,
270    //    we must explicitly configure how they should be treated during item encryption:
271    //      - ENCRYPT_AND_SIGN: The attribute is encrypted and included in the signature
272    //      - SIGN_ONLY: The attribute not encrypted, but is still included in the signature
273    //      - DO_NOTHING: The attribute is not encrypted and not included in the signature
274    //    Any attributes that will be used in beacons must be configured as ENCRYPT_AND_SIGN.
275    let attribute_actions_on_encrypt = HashMap::from([
276        ("customer_id".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
277        ("create_time".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
278        ("state".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
279        ("hasTestResult".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
280    ]);
281
282    // 9. Create the DynamoDb Encryption configuration for the table we will be writing to.
283    //    The beaconVersions are added to the search configuration.
284    let table_config = DynamoDbTableEncryptionConfig::builder()
285        .logical_table_name(ddb_table_name)
286        .partition_key_name("customer_id")
287        .sort_key_name("create_time")
288        .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
289        .keyring(kms_keyring)
290        .search(
291            SearchConfig::builder()
292                .write_version(1) // MUST be 1
293                .versions(beacon_versions)
294                .build()?,
295        )
296        .build()?;
297
298    // 10. Create config
299    let encryption_config = DynamoDbTablesEncryptionConfig::builder()
300        .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
301        .build()?;
302
303    // 11. Create test items
304
305    // Create item with hasTestResult=true
306    let item_with_has_test_result = HashMap::from([
307        (
308            "customer_id".to_string(),
309            AttributeValue::S("ABC-123".to_string()),
310        ),
311        (
312            "create_time".to_string(),
313            AttributeValue::N("1681495205".to_string()),
314        ),
315        ("state".to_string(), AttributeValue::S("CA".to_string())),
316        ("hasTestResult".to_string(), AttributeValue::Bool(true)),
317    ]);
318
319    // Create item with hasTestResult=false
320    let item_with_no_has_test_result = HashMap::from([
321        (
322            "customer_id".to_string(),
323            AttributeValue::S("DEF-456".to_string()),
324        ),
325        (
326            "create_time".to_string(),
327            AttributeValue::N("1681495205".to_string()),
328        ),
329        ("state".to_string(), AttributeValue::S("CA".to_string())),
330        ("hasTestResult".to_string(), AttributeValue::Bool(false)),
331    ]);
332
333    // 12. If developing or debugging, verify config by checking virtual field values directly
334    let trans = transform_client::Client::from_conf(encryption_config.clone())?;
335    let resolve_output = trans
336        .resolve_attributes()
337        .table_name(ddb_table_name)
338        .item(item_with_has_test_result.clone())
339        .version(1)
340        .send()
341        .await?;
342
343    // CompoundBeacons is empty because we have no Compound Beacons configured
344    assert_eq!(resolve_output.compound_beacons.unwrap().len(), 0);
345
346    // Verify that VirtualFields has the expected value
347    let virtual_fields = resolve_output.virtual_fields.unwrap();
348    assert_eq!(virtual_fields.len(), 1);
349    assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");
350
351    // 13. Create a new AWS SDK DynamoDb client using the DynamoDb Encryption Interceptor above
352    let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
353        .interceptor(DbEsdkInterceptor::new(encryption_config)?)
354        .build();
355    let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
356
357    // 14. Put two items into our table using the above client.
358    //     The two items will differ only in their `customer_id` attribute (primary key)
359    //         and their `hasTestResult` attribute.
360    //     We will query against these items to demonstrate how to use our setup above
361    //         to query against our `stateAndHasTestResult` beacon.
362    //     Before the item gets sent to DynamoDb, it will be encrypted
363    //         client-side, according to our configuration.
364    //     Since our configuration includes a beacon on a virtual field named
365    //         `stateAndHasTestResult`, the client will add an attribute
366    //         to the item with name `aws_dbe_b_stateAndHasTestResult`.
367    //         Its value will be an HMAC truncated to as many bits as the
368    //         beacon's `length` parameter; i.e. 5.
369
370    ddb.put_item()
371        .table_name(ddb_table_name)
372        .set_item(Some(item_with_has_test_result.clone()))
373        .send()
374        .await?;
375
376    ddb.put_item()
377        .table_name(ddb_table_name)
378        .set_item(Some(item_with_no_has_test_result.clone()))
379        .send()
380        .await?;
381
382    // 15. Query by stateAndHasTestResult attribute.
383    //     Note that we are constructing the query as if we were querying on plaintext values.
384    //     However, the DDB encryption client will detect that this attribute name has a beacon configured.
385    //     The client will add the beaconized attribute name and attribute value to the query,
386    //         and transform the query to use the beaconized name and value.
387    //     Internally, the client will query for and receive all items with a matching HMAC value in the beacon field.
388    //     This may include a number of "false positives" with different ciphertext, but the same truncated HMAC.
389    //     e.g. if truncate(HMAC("CAt"), 5) == truncate(HMAC("DCf"), 5), the query will return both items.
390    //     The client will decrypt all returned items to determine which ones have the expected attribute values,
391    //         and only surface items with the correct plaintext to the user.
392    //     This procedure is internal to the client and is abstracted away from the user;
393    //     e.g. the user will only see "CAt" and never "DCf", though the actual query returned both.
394    let expression_attribute_values = HashMap::from([
395        // We are querying for the item with `state`="CA" and `hasTestResult`=`true`.
396        // Since we added virtual parts as `state` then `hasTestResult`,
397        //     we must write our query expression in the same order.
398        // We constructed our virtual field as `state`+`hasTestResult`,
399        //     so we add the two parts in that order.
400        // Since we also created a virtual transform that truncated `hasTestResult`
401        //     to its length-1 prefix, i.e. "true" -> "t",
402        //     we write that field as its length-1 prefix in the query.
403        (
404            ":stateAndHasTestResult".to_string(),
405            AttributeValue::S("CAt".to_string()),
406        ),
407    ]);
408
409    // GSIs are sometimes a little bit delayed, so we retry if the query comes up empty.
410    for _i in 0..10 {
411        let query_response = ddb
412            .query()
413            .table_name(ddb_table_name)
414            .index_name(GSI_NAME)
415            .key_condition_expression("stateAndHasTestResult = :stateAndHasTestResult")
416            .set_expression_attribute_values(Some(expression_attribute_values.clone()))
417            .send()
418            .await?;
419
420        // if no results, sleep and try again
421        if query_response.items.is_none() || query_response.items.as_ref().unwrap().is_empty() {
422            std::thread::sleep(std::time::Duration::from_millis(20));
423            continue;
424        }
425
426        let attribute_values = query_response.items.unwrap();
427        // Validate only 1 item was returned: the item we just put
428        assert_eq!(attribute_values.len(), 1);
429        let returned_item = &attribute_values[0];
430        // Validate the item has the expected attributes
431        assert_eq!(returned_item["state"], AttributeValue::S("CA".to_string()));
432        assert_eq!(returned_item["hasTestResult"], AttributeValue::Bool(true));
433        break;
434    }
435    println!("virtual_beacon_searchable_encryption successful.");
436    Ok(())
437}
Source§

impl Client

Source

pub fn from_conf(input: DynamoDbTablesEncryptionConfig) -> Result<Self, Error>

Creates a new client from the service Config.

Examples found in repository?
examples/searchableencryption/compound_beacon_searchable_encryption.rs (line 238)
60pub async fn put_and_query_with_beacon(branch_key_id: &str) -> Result<(), crate::BoxError> {
61    let ddb_table_name = test_utils::UNIT_INSPECTION_TEST_DDB_TABLE_NAME;
62    let branch_key_wrapping_kms_key_arn = test_utils::TEST_BRANCH_KEY_WRAPPING_KMS_KEY_ARN;
63    let branch_key_ddb_table_name = test_utils::TEST_BRANCH_KEYSTORE_DDB_TABLE_NAME;
64
65    // 1. Create Beacons.
66    //    These are the same beacons as in the "BasicSearchableEncryptionExample" in this directory.
67    //    See that file to see details on beacon construction and parameters.
68    //    While we will not directly query against these beacons,
69    //      you must create standard beacons on encrypted fields
70    //      that we wish to use in compound beacons.
71    let last4_beacon = StandardBeacon::builder()
72        .name("inspector_id_last4")
73        .length(10)
74        .build()?;
75
76    let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;
77
78    let standard_beacon_list = vec![last4_beacon, unit_beacon];
79
80    // 2. Define encrypted parts.
81    //    Encrypted parts define the beacons that can be used to construct a compound beacon,
82    //        and how the compound beacon prefixes those beacon values.
83
84    // A encrypted part must receive:
85    //  - name: Name of a standard beacon
86    //  - prefix: Any string. This is plaintext that prefixes the beaconized value in the compound beacon.
87    //            Prefixes must be unique across the configuration, and must not be a prefix of another prefix;
88    //            i.e. for all configured prefixes, the first N characters of a prefix must not equal another prefix.
89    // In practice, it is suggested to have a short value distinguishable from other parts served on the prefix.
90    // For this example, we will choose "L-" as the prefix for "Last 4 digits of inspector ID".
91    // With this prefix and the standard beacon's bit length definition (10), the beaconized
92    //     version of the inspector ID's last 4 digits will appear as
93    //     `L-000` to `L-3ff` inside a compound beacon.
94
95    // For this example, we will choose "U-" as the prefix for "unit".
96    // With this prefix and the standard beacon's bit length definition (30), a unit beacon will appear
97    //     as `U-00000000` to `U-3fffffff` inside a compound beacon.
98    let encrypted_parts_list = vec![
99        EncryptedPart::builder()
100            .name("inspector_id_last4")
101            .prefix("L-")
102            .build()?,
103        EncryptedPart::builder().name("unit").prefix("U-").build()?,
104    ];
105
106    // 3. Define compound beacon.
107    //    A compound beacon allows one to serve multiple beacons or attributes from a single index.
108    //    A compound beacon must receive:
109    //     - name: The name of the beacon. Compound beacon values will be written to `aws_ddb_e_[name]`.
110    //     - split: A character separating parts in a compound beacon
111    //    A compound beacon may also receive:
112    //     - encrypted: A list of encrypted parts. This is effectively a list of beacons. We provide the list
113    //                  that we created above.
114    //     - constructors: A list of constructors. This is an ordered list of possible ways to create a beacon.
115    //                     We have not defined any constructors here; see the complex example for how to do this.
116    //                     The client will provide a default constructor, which will write a compound beacon as:
117    //                     all signed parts in the order they are added to the signed list;
118    //                     all encrypted parts in order they are added to the encrypted list; all parts required.
119    //                     In this example, we expect compound beacons to be written as
120    //                     `L-XXX.U-YYYYYYYY`, since our encrypted list looks like
121    //                     [last4EncryptedPart, unitEncryptedPart].
122    //     - signed: A list of signed parts, i.e. plaintext attributes. This would be provided if we
123    //                     wanted to use plaintext values as part of constructing our compound beacon. We do not
124    //                     provide this here; see the Complex example for an example.
125    let compound_beacon_list = vec![CompoundBeacon::builder()
126        .name("last4UnitCompound")
127        .split(".")
128        .encrypted(encrypted_parts_list)
129        .build()?];
130
131    // 4. Configure the Keystore
132    //    These are the same constructions as in the Basic example, which describes these in more detail.
133
134    let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
135    let key_store_config = KeyStoreConfig::builder()
136        .kms_client(aws_sdk_kms::Client::new(&sdk_config))
137        .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
138        .ddb_table_name(branch_key_ddb_table_name)
139        .logical_key_store_name(branch_key_ddb_table_name)
140        .kms_configuration(KmsConfiguration::KmsKeyArn(
141            branch_key_wrapping_kms_key_arn.to_string(),
142        ))
143        .build()?;
144
145    let key_store = keystore_client::Client::from_conf(key_store_config)?;
146
147    // 5. Create BeaconVersion.
148    //    This is similar to the Basic example, except we have also provided a compoundBeaconList.
149    //    We must also continue to provide all of the standard beacons that compose a compound beacon list.
150    let beacon_version = BeaconVersion::builder()
151        .standard_beacons(standard_beacon_list)
152        .compound_beacons(compound_beacon_list)
153        .version(1) // MUST be 1
154        .key_store(key_store.clone())
155        .key_source(BeaconKeySource::Single(
156            SingleKeyStore::builder()
157                // `keyId` references a beacon key.
158                // For every branch key we create in the keystore,
159                // we also create a beacon key.
160                // This beacon key is not the same as the branch key,
161                // but is created with the same ID as the branch key.
162                .key_id(branch_key_id)
163                .cache_ttl(6000)
164                .build()?,
165        ))
166        .build()?;
167    let beacon_versions = vec![beacon_version];
168
169    // 6. Create a Hierarchical Keyring
170    //    This is the same configuration as in the Basic example.
171
172    let mpl_config = MaterialProvidersConfig::builder().build()?;
173    let mpl = mpl_client::Client::from_conf(mpl_config)?;
174    let kms_keyring = mpl
175        .create_aws_kms_hierarchical_keyring()
176        .branch_key_id(branch_key_id)
177        .key_store(key_store)
178        .ttl_seconds(6000)
179        .send()
180        .await?;
181
182    // 7. Configure which attributes are encrypted and/or signed when writing new items.
183    let attribute_actions_on_encrypt = HashMap::from([
184        ("work_id".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
185        ("inspection_date".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
186        (
187            "inspector_id_last4".to_string(),
188            CryptoAction::EncryptAndSign,
189        ), // Beaconized attributes must be encrypted
190        ("unit".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
191    ]);
192
193    // We do not need to define a crypto action on last4UnitCompound.
194    // We only need to define crypto actions on attributes that we pass to PutItem.
195
196    // 8. Create the DynamoDb Encryption configuration for the table we will be writing to.
197    //    The beaconVersions are added to the search configuration.
198    let table_config = DynamoDbTableEncryptionConfig::builder()
199        .logical_table_name(ddb_table_name)
200        .partition_key_name("work_id")
201        .sort_key_name("inspection_date")
202        .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
203        .keyring(kms_keyring)
204        .search(
205            SearchConfig::builder()
206                .write_version(1) // MUST be 1
207                .versions(beacon_versions)
208                .build()?,
209        )
210        .build()?;
211
212    // 9. Create config
213    let encryption_config = DynamoDbTablesEncryptionConfig::builder()
214        .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
215        .build()?;
216
217    // 10. Create an item with both attributes used in the compound beacon.
218    let item = HashMap::from([
219        (
220            "work_id".to_string(),
221            AttributeValue::S("9ce39272-8068-4efd-a211-cd162ad65d4c".to_string()),
222        ),
223        (
224            "inspection_date".to_string(),
225            AttributeValue::S("2023-06-13".to_string()),
226        ),
227        (
228            "inspector_id_last4".to_string(),
229            AttributeValue::S("5678".to_string()),
230        ),
231        (
232            "unit".to_string(),
233            AttributeValue::S("011899988199".to_string()),
234        ),
235    ]);
236
237    // 11. If developing or debugging, verify config by checking compound beacon values directly
238    let trans = transform_client::Client::from_conf(encryption_config.clone())?;
239    let resolve_output = trans
240        .resolve_attributes()
241        .table_name(ddb_table_name)
242        .item(item.clone())
243        .version(1)
244        .send()
245        .await?;
246
247    // Verify that there are no virtual fields
248    assert_eq!(resolve_output.virtual_fields.unwrap().len(), 0);
249
250    // Verify that CompoundBeacons has the expected value
251    let compound_beacons = resolve_output.compound_beacons.unwrap();
252    assert_eq!(compound_beacons.len(), 1);
253    assert_eq!(
254        compound_beacons["last4UnitCompound"],
255        "L-5678.U-011899988199"
256    );
257    // Note : the compound beacon actually stored in the table is not "L-5678.U-011899988199"
258    // but rather something like "L-abc.U-123", as both parts are EncryptedParts
259    // and therefore the text is replaced by the associated beacon
260
261    // 12. Create a new AWS SDK DynamoDb client using the DynamoDb Encryption Interceptor above
262    let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
263        .interceptor(DbEsdkInterceptor::new(encryption_config)?)
264        .build();
265    let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
266
267    // 13. Write the item to the table
268    ddb.put_item()
269        .table_name(ddb_table_name)
270        .set_item(Some(item.clone()))
271        .send()
272        .await?;
273
274    // 14. Query for the item we just put.
275    let expression_attribute_values = HashMap::from([
276        // This query expression takes a few factors into consideration:
277        //  - The configured prefix for the last 4 digits of an inspector ID is "L-";
278        //    the prefix for the unit is "U-"
279        //  - The configured split character, separating component parts, is "."
280        //  - The default constructor adds encrypted parts in the order they are in the encrypted list, which
281        //    configures `last4` to come before `unit``
282        // NOTE: We did not need to create a compound beacon for this query. This query could have also been
283        //       done by querying on the partition and sort key, as was done in the Basic example.
284        //       This is intended to be a simple example to demonstrate how one might set up a compound beacon.
285        //       For examples where compound beacons are required, see the Complex example.
286        //       The most basic extension to this example that would require a compound beacon would add a third
287        //       part to the compound beacon, then query against three parts.
288        (
289            ":value".to_string(),
290            AttributeValue::S("L-5678.U-011899988199".to_string()),
291        ),
292    ]);
293
294    // GSIs are sometimes a little bit delayed, so we retry if the query comes up empty.
295    for _i in 0..10 {
296        let query_response = ddb
297            .query()
298            .table_name(ddb_table_name)
299            .index_name(GSI_NAME)
300            .key_condition_expression("last4UnitCompound = :value")
301            .set_expression_attribute_values(Some(expression_attribute_values.clone()))
302            .send()
303            .await?;
304
305        // if no results, sleep and try again
306        if query_response.items.is_none() || query_response.items.as_ref().unwrap().is_empty() {
307            std::thread::sleep(std::time::Duration::from_millis(20));
308            continue;
309        }
310
311        let attribute_values = query_response.items.unwrap();
312        // Validate only 1 item was returned: the item we just put
313        assert_eq!(attribute_values.len(), 1);
314        let returned_item = &attribute_values[0];
315        // Validate the item has the expected attributes
316        assert_eq!(
317            returned_item["inspector_id_last4"],
318            AttributeValue::S("5678".to_string())
319        );
320        assert_eq!(
321            returned_item["unit"],
322            AttributeValue::S("011899988199".to_string())
323        );
324        break;
325    }
326    println!("compound_beacon_searchable_encryption successful.");
327    Ok(())
328}
More examples
Hide additional examples
examples/searchableencryption/virtual_beacon_searchable_encryption.rs (line 334)
119pub async fn put_and_query_with_beacon(branch_key_id: &str) -> Result<(), crate::BoxError> {
120    let ddb_table_name = test_utils::SIMPLE_BEACON_TEST_DDB_TABLE_NAME;
121    let branch_key_wrapping_kms_key_arn = test_utils::TEST_BRANCH_KEY_WRAPPING_KMS_KEY_ARN;
122    let branch_key_ddb_table_name = test_utils::TEST_BRANCH_KEYSTORE_DDB_TABLE_NAME;
123
124    // 1. Construct a length-1 prefix virtual transform.
125    //    `hasTestResult` is a binary attribute, containing either `true` or `false`.
126    //    As an example to demonstrate virtual transforms, we will truncate the value
127    //    of `hasTestResult` in the virtual field to the length-1 prefix of the binary value, i.e.:
128    //     - "true" -> "t"
129    //     - "false -> "f"
130    //    This is not necessary. This is done as a demonstration of virtual transforms.
131    //    Virtual transform operations treat all attributes as strings
132    //    (i.e. the boolean value `true` is interpreted as a string "true"),
133    //    so its length-1 prefix is just "t".
134
135    let length1_prefix_virtual_transform_list = vec![VirtualTransform::Prefix(
136        GetPrefix::builder().length(1).build()?,
137    )];
138
139    // 2. Construct the VirtualParts required for the VirtualField
140    let has_test_result_part = VirtualPart::builder()
141        .loc("hasTestResult")
142        .trans(length1_prefix_virtual_transform_list)
143        .build()?;
144
145    let state_part = VirtualPart::builder().loc("state").build()?;
146    // Note that we do not apply any transform to the `state` attribute,
147    // and the virtual field will read in the attribute as-is.
148
149    // 3. Construct the VirtualField from the VirtualParts
150    //    Note that the order that virtual parts are added to the virtualPartList
151    //    dictates the order in which they are concatenated to build the virtual field.
152    //    You must add virtual parts in the same order on write as you do on read.
153    let virtual_part_list = vec![state_part, has_test_result_part];
154
155    let state_and_has_test_result_field = VirtualField::builder()
156        .name("stateAndHasTestResult")
157        .parts(virtual_part_list)
158        .build()?;
159
160    let virtual_field_list = vec![state_and_has_test_result_field];
161
162    // 4. Configure our beacon.
163    //    The virtual field is assumed to hold a US 2-letter state abbreviation
164    //    (56 possible values = 50 states + 6 territories) concatenated with a binary attribute
165    //    (2 possible values: true/false hasTestResult field), we expect a population size of
166    //    56 * 2 = 112 possible values.
167    //    We will also assume that these values are reasonably well-distributed across
168    //    customer IDs. In practice, this will not be true. We would expect
169    //    more populous states to appear more frequently in the database.
170    //    A more complex analysis would show that a stricter upper bound
171    //    is necessary to account for this by hiding information from the
172    //    underlying distribution.
173    //
174    //    This link provides guidance for choosing a beacon length:
175    //       https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/choosing-beacon-length.html
176    //    We follow the guidance in the link above to determine reasonable bounds for beacon length:
177    //     - min: log(sqrt(112))/log(2) ~= 3.4, round down to 3
178    //     - max: log((112/2))/log(2) ~= 5.8, round up to 6
179    //    You will somehow need to round results to a nearby integer.
180    //    We choose to round to the nearest integer; you might consider a different rounding approach.
181    //    Rounding up will return fewer expected "false positives" in queries,
182    //       leading to fewer decrypt calls and better performance,
183    //       but it is easier to identify which beacon values encode distinct plaintexts.
184    //    Rounding down will return more expected "false positives" in queries,
185    //       leading to more decrypt calls and worse performance,
186    //       but it is harder to identify which beacon values encode distinct plaintexts.
187    //    We can choose a beacon length between 3 and 6:
188    //     - Closer to 3, we expect more "false positives" to be returned,
189    //       making it harder to identify which beacon values encode distinct plaintexts,
190    //       but leading to more decrypt calls and worse performance
191    //     - Closer to 6, we expect fewer "false positives" returned in queries,
192    //       leading to fewer decrypt calls and better performance,
193    //       but it is easier to identify which beacon values encode distinct plaintexts.
194    //    As an example, we will choose 5.
195    //    Values stored in aws_dbe_b_stateAndHasTestResult will be 5 bits long (0x00 - 0x1f)
196    //    There will be 2^5 = 32 possible HMAC values.
197    //    With a well-distributed dataset (112 values), for a particular beacon we expect
198    //    (112/32) = 3.5 combinations of abbreviation + true/false attribute
199    //    sharing that beacon value.
200    let standard_beacon_list = vec![StandardBeacon::builder()
201        .name("stateAndHasTestResult")
202        .length(5)
203        .build()?];
204
205    // 5. Configure Keystore.
206    //    This example expects that you have already set up a KeyStore with a single branch key.
207    //    See the "CreateKeyStoreTableExample" and "CreateKeyStoreKeyExample" files for how to do this.
208    //    After you create a branch key, you should persist its ID for use in this example.
209    let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
210    let key_store_config = KeyStoreConfig::builder()
211        .kms_client(aws_sdk_kms::Client::new(&sdk_config))
212        .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
213        .ddb_table_name(branch_key_ddb_table_name)
214        .logical_key_store_name(branch_key_ddb_table_name)
215        .kms_configuration(KmsConfiguration::KmsKeyArn(
216            branch_key_wrapping_kms_key_arn.to_string(),
217        ))
218        .build()?;
219
220    let key_store = keystore_client::Client::from_conf(key_store_config)?;
221
222    // 6. Create BeaconVersion.
223    //    The BeaconVersion inside the list holds the list of beacons on the table.
224    //    The BeaconVersion also stores information about the keystore.
225    //    BeaconVersion must be provided:
226    //      - keyStore: The keystore configured in the previous step.
227    //      - keySource: A configuration for the key source.
228    //        For simple use cases, we can configure a 'singleKeySource' which
229    //        statically configures a single beaconKey. That is the approach this example takes.
230    //        For use cases where you want to use different beacon keys depending on the data
231    //        (for example if your table holds data for multiple tenants, and you want to use
232    //        a different beacon key per tenant), look into configuring a MultiKeyStore:
233    //          https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-encryption-multitenant.html
234    //    We also provide our standard beacon list and virtual fields here.
235    let beacon_version = BeaconVersion::builder()
236        .standard_beacons(standard_beacon_list)
237        .virtual_fields(virtual_field_list)
238        .version(1) // MUST be 1
239        .key_store(key_store.clone())
240        .key_source(BeaconKeySource::Single(
241            SingleKeyStore::builder()
242                // `keyId` references a beacon key.
243                // For every branch key we create in the keystore,
244                // we also create a beacon key.
245                // This beacon key is not the same as the branch key,
246                // but is created with the same ID as the branch key.
247                .key_id(branch_key_id)
248                .cache_ttl(6000)
249                .build()?,
250        ))
251        .build()?;
252    let beacon_versions = vec![beacon_version];
253
254    // 7. Create a Hierarchical Keyring
255    //    This is a KMS keyring that utilizes the keystore table.
256    //    This config defines how items are encrypted and decrypted.
257    //    NOTE: You should configure this to use the same keystore as your search config.
258    let mpl_config = MaterialProvidersConfig::builder().build()?;
259    let mpl = mpl_client::Client::from_conf(mpl_config)?;
260    let kms_keyring = mpl
261        .create_aws_kms_hierarchical_keyring()
262        .branch_key_id(branch_key_id)
263        .key_store(key_store)
264        .ttl_seconds(6000)
265        .send()
266        .await?;
267
268    // 8. Configure which attributes are encrypted and/or signed when writing new items.
269    //    For each attribute that may exist on the items we plan to write to our DynamoDbTable,
270    //    we must explicitly configure how they should be treated during item encryption:
271    //      - ENCRYPT_AND_SIGN: The attribute is encrypted and included in the signature
272    //      - SIGN_ONLY: The attribute not encrypted, but is still included in the signature
273    //      - DO_NOTHING: The attribute is not encrypted and not included in the signature
274    //    Any attributes that will be used in beacons must be configured as ENCRYPT_AND_SIGN.
275    let attribute_actions_on_encrypt = HashMap::from([
276        ("customer_id".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
277        ("create_time".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
278        ("state".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
279        ("hasTestResult".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
280    ]);
281
282    // 9. Create the DynamoDb Encryption configuration for the table we will be writing to.
283    //    The beaconVersions are added to the search configuration.
284    let table_config = DynamoDbTableEncryptionConfig::builder()
285        .logical_table_name(ddb_table_name)
286        .partition_key_name("customer_id")
287        .sort_key_name("create_time")
288        .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
289        .keyring(kms_keyring)
290        .search(
291            SearchConfig::builder()
292                .write_version(1) // MUST be 1
293                .versions(beacon_versions)
294                .build()?,
295        )
296        .build()?;
297
298    // 10. Create config
299    let encryption_config = DynamoDbTablesEncryptionConfig::builder()
300        .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
301        .build()?;
302
303    // 11. Create test items
304
305    // Create item with hasTestResult=true
306    let item_with_has_test_result = HashMap::from([
307        (
308            "customer_id".to_string(),
309            AttributeValue::S("ABC-123".to_string()),
310        ),
311        (
312            "create_time".to_string(),
313            AttributeValue::N("1681495205".to_string()),
314        ),
315        ("state".to_string(), AttributeValue::S("CA".to_string())),
316        ("hasTestResult".to_string(), AttributeValue::Bool(true)),
317    ]);
318
319    // Create item with hasTestResult=false
320    let item_with_no_has_test_result = HashMap::from([
321        (
322            "customer_id".to_string(),
323            AttributeValue::S("DEF-456".to_string()),
324        ),
325        (
326            "create_time".to_string(),
327            AttributeValue::N("1681495205".to_string()),
328        ),
329        ("state".to_string(), AttributeValue::S("CA".to_string())),
330        ("hasTestResult".to_string(), AttributeValue::Bool(false)),
331    ]);
332
333    // 12. If developing or debugging, verify config by checking virtual field values directly
334    let trans = transform_client::Client::from_conf(encryption_config.clone())?;
335    let resolve_output = trans
336        .resolve_attributes()
337        .table_name(ddb_table_name)
338        .item(item_with_has_test_result.clone())
339        .version(1)
340        .send()
341        .await?;
342
343    // CompoundBeacons is empty because we have no Compound Beacons configured
344    assert_eq!(resolve_output.compound_beacons.unwrap().len(), 0);
345
346    // Verify that VirtualFields has the expected value
347    let virtual_fields = resolve_output.virtual_fields.unwrap();
348    assert_eq!(virtual_fields.len(), 1);
349    assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");
350
351    // 13. Create a new AWS SDK DynamoDb client using the DynamoDb Encryption Interceptor above
352    let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
353        .interceptor(DbEsdkInterceptor::new(encryption_config)?)
354        .build();
355    let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
356
357    // 14. Put two items into our table using the above client.
358    //     The two items will differ only in their `customer_id` attribute (primary key)
359    //         and their `hasTestResult` attribute.
360    //     We will query against these items to demonstrate how to use our setup above
361    //         to query against our `stateAndHasTestResult` beacon.
362    //     Before the item gets sent to DynamoDb, it will be encrypted
363    //         client-side, according to our configuration.
364    //     Since our configuration includes a beacon on a virtual field named
365    //         `stateAndHasTestResult`, the client will add an attribute
366    //         to the item with name `aws_dbe_b_stateAndHasTestResult`.
367    //         Its value will be an HMAC truncated to as many bits as the
368    //         beacon's `length` parameter; i.e. 5.
369
370    ddb.put_item()
371        .table_name(ddb_table_name)
372        .set_item(Some(item_with_has_test_result.clone()))
373        .send()
374        .await?;
375
376    ddb.put_item()
377        .table_name(ddb_table_name)
378        .set_item(Some(item_with_no_has_test_result.clone()))
379        .send()
380        .await?;
381
382    // 15. Query by stateAndHasTestResult attribute.
383    //     Note that we are constructing the query as if we were querying on plaintext values.
384    //     However, the DDB encryption client will detect that this attribute name has a beacon configured.
385    //     The client will add the beaconized attribute name and attribute value to the query,
386    //         and transform the query to use the beaconized name and value.
387    //     Internally, the client will query for and receive all items with a matching HMAC value in the beacon field.
388    //     This may include a number of "false positives" with different ciphertext, but the same truncated HMAC.
389    //     e.g. if truncate(HMAC("CAt"), 5) == truncate(HMAC("DCf"), 5), the query will return both items.
390    //     The client will decrypt all returned items to determine which ones have the expected attribute values,
391    //         and only surface items with the correct plaintext to the user.
392    //     This procedure is internal to the client and is abstracted away from the user;
393    //     e.g. the user will only see "CAt" and never "DCf", though the actual query returned both.
394    let expression_attribute_values = HashMap::from([
395        // We are querying for the item with `state`="CA" and `hasTestResult`=`true`.
396        // Since we added virtual parts as `state` then `hasTestResult`,
397        //     we must write our query expression in the same order.
398        // We constructed our virtual field as `state`+`hasTestResult`,
399        //     so we add the two parts in that order.
400        // Since we also created a virtual transform that truncated `hasTestResult`
401        //     to its length-1 prefix, i.e. "true" -> "t",
402        //     we write that field as its length-1 prefix in the query.
403        (
404            ":stateAndHasTestResult".to_string(),
405            AttributeValue::S("CAt".to_string()),
406        ),
407    ]);
408
409    // GSIs are sometimes a little bit delayed, so we retry if the query comes up empty.
410    for _i in 0..10 {
411        let query_response = ddb
412            .query()
413            .table_name(ddb_table_name)
414            .index_name(GSI_NAME)
415            .key_condition_expression("stateAndHasTestResult = :stateAndHasTestResult")
416            .set_expression_attribute_values(Some(expression_attribute_values.clone()))
417            .send()
418            .await?;
419
420        // if no results, sleep and try again
421        if query_response.items.is_none() || query_response.items.as_ref().unwrap().is_empty() {
422            std::thread::sleep(std::time::Duration::from_millis(20));
423            continue;
424        }
425
426        let attribute_values = query_response.items.unwrap();
427        // Validate only 1 item was returned: the item we just put
428        assert_eq!(attribute_values.len(), 1);
429        let returned_item = &attribute_values[0];
430        // Validate the item has the expected attributes
431        assert_eq!(returned_item["state"], AttributeValue::S("CA".to_string()));
432        assert_eq!(returned_item["hasTestResult"], AttributeValue::Bool(true));
433        break;
434    }
435    println!("virtual_beacon_searchable_encryption successful.");
436    Ok(())
437}

Trait Implementations§

Source§

impl Clone for Client

Source§

fn clone(&self) -> Client

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Client

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for Client

Source§

fn eq(&self, other: &Client) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for Client

Auto Trait Implementations§

§

impl Freeze for Client

§

impl !RefUnwindSafe for Client

§

impl Send for Client

§

impl Sync for Client

§

impl Unpin for Client

§

impl !UnwindSafe for Client

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> AnyRef for T
where T: 'static,

Source§

fn as_any_ref(&self) -> &(dyn Any + 'static)

Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> Upcast<T> for T
where T: ?Sized,

Source§

fn upcast(&self) -> Ptr<T>

Source§

impl<T> UpcastObject<T> for T
where T: ?Sized,

Source§

fn upcast(&self) -> Object<T>

Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,