pub struct Client { /* private fields */ }
Implementations§
Source§impl Client
impl Client
Sourcepub fn get_key_store_info(&self) -> GetKeyStoreInfoFluentBuilder
pub fn get_key_store_info(&self) -> GetKeyStoreInfoFluentBuilder
Constructs a fluent builder for the GetKeyStoreInfo
operation.
- The fluent builder is configurable:
- On success, responds with
GetKeyStoreInfoOutput
with field(s):grant_tokens(Option<::std::vec::Vec<::std::string::String>>)
: (undocumented)key_store_id(Option<::std::string::String>)
: (undocumented)key_store_name(Option<::std::string::String>)
: (undocumented)kms_configuration(Option<crate::deps::aws_cryptography_keyStore::types::KmsConfiguration>)
: (undocumented)logical_key_store_name(Option<::std::string::String>)
: (undocumented)
- On failure, responds with
SdkError<GetKeyStoreInfoError>
Source§impl Client
impl Client
Sourcepub fn create_key_store(&self) -> CreateKeyStoreFluentBuilder
pub fn create_key_store(&self) -> CreateKeyStoreFluentBuilder
Constructs a fluent builder for the CreateKeyStore
operation.
- The fluent builder is configurable:
- On success, responds with
CreateKeyStoreOutput
with field(s):table_arn(Option<::std::string::String>)
: (undocumented)
- On failure, responds with
SdkError<CreateKeyStoreError>
Source§impl Client
impl Client
Sourcepub fn create_key(&self) -> CreateKeyFluentBuilder
pub fn create_key(&self) -> CreateKeyFluentBuilder
Constructs a fluent builder for the CreateKey
operation.
- The fluent builder is configurable:
branch_key_identifier(impl Into<Option<::std::string::String>>)
/set_branch_key_identifier(Option<::std::string::String>)
: (undocumented)encryption_context(impl Into<Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>>)
/set_encryption_context(Option<::std::collections::HashMap<::std::string::String, ::std::string::String>>)
: (undocumented)
- On success, responds with
CreateKeyOutput
with field(s):branch_key_identifier(Option<::std::string::String>)
: (undocumented)
- On failure, responds with
SdkError<CreateKeyError>
Examples found in repository?
examples/create_keystore_key.rs (line 48)
25pub async fn keystore_create_key() -> Result<String, crate::BoxError> {
26 let key_store_table_name = test_utils::TEST_KEYSTORE_NAME;
27 let logical_key_store_name = test_utils::TEST_LOGICAL_KEYSTORE_NAME;
28 let kms_key_arn = test_utils::TEST_KEYSTORE_KMS_KEY_ID;
29
30 // 1. Configure your KeyStore resource.
31 // This SHOULD be the same configuration that was used to create the DDB table
32 // in the "Create KeyStore Table Example".
33 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
34 let key_store_config = KeyStoreConfig::builder()
35 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
36 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
37 .ddb_table_name(key_store_table_name)
38 .logical_key_store_name(logical_key_store_name)
39 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
40 .build()?;
41
42 let keystore = keystore_client::Client::from_conf(key_store_config)?;
43
44 // 2. Create a new branch key and beacon key in our KeyStore.
45 // Both the branch key and the beacon key will share an Id.
46 // This creation is eventually consistent.
47
48 let new_key = keystore.create_key().send().await?;
49 Ok(new_key.branch_key_identifier.unwrap())
50}
Source§impl Client
impl Client
Sourcepub fn version_key(&self) -> VersionKeyFluentBuilder
pub fn version_key(&self) -> VersionKeyFluentBuilder
Constructs a fluent builder for the VersionKey
operation.
- The fluent builder is configurable:
- On success, responds with
VersionKeyOutput
with field(s): - On failure, responds with
SdkError<VersionKeyError>
Source§impl Client
impl Client
Sourcepub fn get_active_branch_key(&self) -> GetActiveBranchKeyFluentBuilder
pub fn get_active_branch_key(&self) -> GetActiveBranchKeyFluentBuilder
Constructs a fluent builder for the GetActiveBranchKey
operation.
- The fluent builder is configurable:
- On success, responds with
GetActiveBranchKeyOutput
with field(s): - On failure, responds with
SdkError<GetActiveBranchKeyError>
Source§impl Client
impl Client
Sourcepub fn get_branch_key_version(&self) -> GetBranchKeyVersionFluentBuilder
pub fn get_branch_key_version(&self) -> GetBranchKeyVersionFluentBuilder
Constructs a fluent builder for the GetBranchKeyVersion
operation.
- The fluent builder is configurable:
- On success, responds with
GetBranchKeyVersionOutput
with field(s): - On failure, responds with
SdkError<GetBranchKeyVersionError>
Source§impl Client
impl Client
Sourcepub fn get_beacon_key(&self) -> GetBeaconKeyFluentBuilder
pub fn get_beacon_key(&self) -> GetBeaconKeyFluentBuilder
Constructs a fluent builder for the GetBeaconKey
operation.
- The fluent builder is configurable:
- On success, responds with
GetBeaconKeyOutput
with field(s): - On failure, responds with
SdkError<GetBeaconKeyError>
Source§impl Client
impl Client
Sourcepub fn from_conf(input: KeyStoreConfig) -> Result<Self, Error>
pub fn from_conf(input: KeyStoreConfig) -> Result<Self, Error>
Creates a new client from the service Config
.
Examples found in repository?
examples/create_keystore_key.rs (line 42)
25pub async fn keystore_create_key() -> Result<String, crate::BoxError> {
26 let key_store_table_name = test_utils::TEST_KEYSTORE_NAME;
27 let logical_key_store_name = test_utils::TEST_LOGICAL_KEYSTORE_NAME;
28 let kms_key_arn = test_utils::TEST_KEYSTORE_KMS_KEY_ID;
29
30 // 1. Configure your KeyStore resource.
31 // This SHOULD be the same configuration that was used to create the DDB table
32 // in the "Create KeyStore Table Example".
33 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
34 let key_store_config = KeyStoreConfig::builder()
35 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
36 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
37 .ddb_table_name(key_store_table_name)
38 .logical_key_store_name(logical_key_store_name)
39 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
40 .build()?;
41
42 let keystore = keystore_client::Client::from_conf(key_store_config)?;
43
44 // 2. Create a new branch key and beacon key in our KeyStore.
45 // Both the branch key and the beacon key will share an Id.
46 // This creation is eventually consistent.
47
48 let new_key = keystore.create_key().send().await?;
49 Ok(new_key.branch_key_identifier.unwrap())
50}
More examples
examples/keyring/hierarchical_keyring.rs (line 90)
63pub async fn put_item_get_item(
64 tenant1_branch_key_id: &str,
65 tenant2_branch_key_id: &str,
66) -> Result<(), crate::BoxError> {
67 let ddb_table_name = test_utils::TEST_DDB_TABLE_NAME;
68
69 let keystore_table_name = test_utils::TEST_KEYSTORE_NAME;
70 let logical_keystore_name = test_utils::TEST_LOGICAL_KEYSTORE_NAME;
71 let kms_key_id = test_utils::TEST_KEYSTORE_KMS_KEY_ID;
72
73 // Initial KeyStore Setup: This example requires that you have already
74 // created your KeyStore, and have populated it with two new branch keys.
75 // See the "Create KeyStore Table Example" and "Create KeyStore Key Example"
76 // for an example of how to do this.
77
78 // 1. Configure your KeyStore resource.
79 // This SHOULD be the same configuration that you used
80 // to initially create and populate your KeyStore.
81 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
82 let key_store_config = KeyStoreConfig::builder()
83 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
84 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
85 .ddb_table_name(keystore_table_name)
86 .logical_key_store_name(logical_keystore_name)
87 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_id.to_string()))
88 .build()?;
89
90 let key_store = keystore_client::Client::from_conf(key_store_config)?;
91
92 // 2. Create a Branch Key ID Supplier. See ExampleBranchKeyIdSupplier in this directory.
93 let dbesdk_config = DynamoDbEncryptionConfig::builder().build()?;
94 let dbesdk = dbesdk_client::Client::from_conf(dbesdk_config)?;
95 let supplier = ExampleBranchKeyIdSupplier::new(tenant1_branch_key_id, tenant2_branch_key_id);
96
97 let branch_key_id_supplier = dbesdk
98 .create_dynamo_db_encryption_branch_key_id_supplier()
99 .ddb_key_branch_key_id_supplier(supplier)
100 .send()
101 .await?
102 .branch_key_id_supplier
103 .unwrap();
104
105 // 3. Create the Hierarchical Keyring, using the Branch Key ID Supplier above.
106 // With this configuration, the AWS SDK Client ultimately configured will be capable
107 // of encrypting or decrypting items for either tenant (assuming correct KMS access).
108 // If you want to restrict the client to only encrypt or decrypt for a single tenant,
109 // configure this Hierarchical Keyring using `.branchKeyId(tenant1BranchKeyId)` instead
110 // of `.branchKeyIdSupplier(branchKeyIdSupplier)`.
111 let mpl_config = MaterialProvidersConfig::builder().build()?;
112 let mpl = mpl_client::Client::from_conf(mpl_config)?;
113
114 let hierarchical_keyring = mpl
115 .create_aws_kms_hierarchical_keyring()
116 .branch_key_id_supplier(branch_key_id_supplier)
117 .key_store(key_store)
118 .ttl_seconds(600)
119 .send()
120 .await?;
121
122 // 4. Configure which attributes are encrypted and/or signed when writing new items.
123 // For each attribute that may exist on the items we plan to write to our DynamoDbTable,
124 // we must explicitly configure how they should be treated during item encryption:
125 // - ENCRYPT_AND_SIGN: The attribute is encrypted and included in the signature
126 // - SIGN_ONLY: The attribute not encrypted, but is still included in the signature
127 // - DO_NOTHING: The attribute is not encrypted and not included in the signature
128 let attribute_actions_on_encrypt = HashMap::from([
129 ("partition_key".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
130 ("sort_key".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
131 (
132 "tenant_sensitive_data".to_string(),
133 CryptoAction::EncryptAndSign,
134 ),
135 ]);
136
137 // 5. Configure which attributes we expect to be included in the signature
138 // when reading items. There are two options for configuring this:
139 //
140 // - (Recommended) Configure `allowedUnsignedAttributesPrefix`:
141 // When defining your DynamoDb schema and deciding on attribute names,
142 // choose a distinguishing prefix (such as ":") for all attributes that
143 // you do not want to include in the signature.
144 // This has two main benefits:
145 // - It is easier to reason about the security and authenticity of data within your item
146 // when all unauthenticated data is easily distinguishable by their attribute name.
147 // - If you need to add new unauthenticated attributes in the future,
148 // you can easily make the corresponding update to your `attributeActionsOnEncrypt`
149 // and immediately start writing to that new attribute, without
150 // any other configuration update needed.
151 // Once you configure this field, it is not safe to update it.
152 //
153 // - Configure `allowedUnsignedAttributes`: You may also explicitly list
154 // a set of attributes that should be considered unauthenticated when encountered
155 // on read. Be careful if you use this configuration. Do not remove an attribute
156 // name from this configuration, even if you are no longer writing with that attribute,
157 // as old items may still include this attribute, and our configuration needs to know
158 // to continue to exclude this attribute from the signature scope.
159 // If you add new attribute names to this field, you must first deploy the update to this
160 // field to all readers in your host fleet before deploying the update to start writing
161 // with that new attribute.
162 //
163 // For this example, we currently authenticate all attributes. To make it easier to
164 // add unauthenticated attributes in the future, we define a prefix ":" for such attributes.
165 const UNSIGNED_ATTR_PREFIX: &str = ":";
166
167 // 6. Create the DynamoDb Encryption configuration for the table we will be writing to.
168 let table_config = DynamoDbTableEncryptionConfig::builder()
169 .logical_table_name(ddb_table_name)
170 .partition_key_name("partition_key")
171 .sort_key_name("sort_key")
172 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
173 .keyring(hierarchical_keyring)
174 .allowed_unsigned_attribute_prefix(UNSIGNED_ATTR_PREFIX)
175 .build()?;
176
177 let table_configs = DynamoDbTablesEncryptionConfig::builder()
178 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
179 .build()?;
180
181 // 7. Create a new AWS SDK DynamoDb client using the DynamoDb Encryption Interceptor above
182 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
183 let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
184 .interceptor(DbEsdkInterceptor::new(table_configs)?)
185 .build();
186 let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
187
188 // 8. Put an item into our table using the above client.
189 // Before the item gets sent to DynamoDb, it will be encrypted
190 // client-side, according to our configuration.
191 // Because the item we are writing uses "tenantId1" as our partition value,
192 // based on the code we wrote in the ExampleBranchKeySupplier,
193 // `tenant1BranchKeyId` will be used to encrypt this item.
194 let item = HashMap::from([
195 (
196 "partition_key".to_string(),
197 AttributeValue::S("tenant1Id".to_string()),
198 ),
199 ("sort_key".to_string(), AttributeValue::N("0".to_string())),
200 (
201 "tenant_sensitive_data".to_string(),
202 AttributeValue::S("encrypt and sign me!".to_string()),
203 ),
204 ]);
205
206 ddb.put_item()
207 .table_name(ddb_table_name)
208 .set_item(Some(item.clone()))
209 .send()
210 .await?;
211
212 // 9. Get the item back from our table using the same client.
213 // The client will decrypt the item client-side, and return
214 // back the original item.
215 // Because the returned item's partition value is "tenantId1",
216 // based on the code we wrote in the ExampleBranchKeySupplier,
217 // `tenant1BranchKeyId` will be used to decrypt this item.
218 let key_to_get = HashMap::from([
219 (
220 "partition_key".to_string(),
221 AttributeValue::S("tenant1Id".to_string()),
222 ),
223 ("sort_key".to_string(), AttributeValue::N("0".to_string())),
224 ]);
225
226 let resp = ddb
227 .get_item()
228 .table_name(ddb_table_name)
229 .set_key(Some(key_to_get))
230 .consistent_read(true)
231 .send()
232 .await?;
233
234 assert_eq!(resp.item, Some(item));
235 println!("hierarchical_keyring successful.");
236 Ok(())
237}
examples/searchableencryption/compound_beacon_searchable_encryption.rs (line 145)
60pub async fn put_and_query_with_beacon(branch_key_id: &str) -> Result<(), crate::BoxError> {
61 let ddb_table_name = test_utils::UNIT_INSPECTION_TEST_DDB_TABLE_NAME;
62 let branch_key_wrapping_kms_key_arn = test_utils::TEST_BRANCH_KEY_WRAPPING_KMS_KEY_ARN;
63 let branch_key_ddb_table_name = test_utils::TEST_BRANCH_KEYSTORE_DDB_TABLE_NAME;
64
65 // 1. Create Beacons.
66 // These are the same beacons as in the "BasicSearchableEncryptionExample" in this directory.
67 // See that file to see details on beacon construction and parameters.
68 // While we will not directly query against these beacons,
69 // you must create standard beacons on encrypted fields
70 // that we wish to use in compound beacons.
71 let last4_beacon = StandardBeacon::builder()
72 .name("inspector_id_last4")
73 .length(10)
74 .build()?;
75
76 let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;
77
78 let standard_beacon_list = vec![last4_beacon, unit_beacon];
79
80 // 2. Define encrypted parts.
81 // Encrypted parts define the beacons that can be used to construct a compound beacon,
82 // and how the compound beacon prefixes those beacon values.
83
84 // A encrypted part must receive:
85 // - name: Name of a standard beacon
86 // - prefix: Any string. This is plaintext that prefixes the beaconized value in the compound beacon.
87 // Prefixes must be unique across the configuration, and must not be a prefix of another prefix;
88 // i.e. for all configured prefixes, the first N characters of a prefix must not equal another prefix.
89 // In practice, it is suggested to have a short value distinguishable from other parts served on the prefix.
90 // For this example, we will choose "L-" as the prefix for "Last 4 digits of inspector ID".
91 // With this prefix and the standard beacon's bit length definition (10), the beaconized
92 // version of the inspector ID's last 4 digits will appear as
93 // `L-000` to `L-3ff` inside a compound beacon.
94
95 // For this example, we will choose "U-" as the prefix for "unit".
96 // With this prefix and the standard beacon's bit length definition (30), a unit beacon will appear
97 // as `U-00000000` to `U-3fffffff` inside a compound beacon.
98 let encrypted_parts_list = vec![
99 EncryptedPart::builder()
100 .name("inspector_id_last4")
101 .prefix("L-")
102 .build()?,
103 EncryptedPart::builder().name("unit").prefix("U-").build()?,
104 ];
105
106 // 3. Define compound beacon.
107 // A compound beacon allows one to serve multiple beacons or attributes from a single index.
108 // A compound beacon must receive:
109 // - name: The name of the beacon. Compound beacon values will be written to `aws_ddb_e_[name]`.
110 // - split: A character separating parts in a compound beacon
111 // A compound beacon may also receive:
112 // - encrypted: A list of encrypted parts. This is effectively a list of beacons. We provide the list
113 // that we created above.
114 // - constructors: A list of constructors. This is an ordered list of possible ways to create a beacon.
115 // We have not defined any constructors here; see the complex example for how to do this.
116 // The client will provide a default constructor, which will write a compound beacon as:
117 // all signed parts in the order they are added to the signed list;
118 // all encrypted parts in order they are added to the encrypted list; all parts required.
119 // In this example, we expect compound beacons to be written as
120 // `L-XXX.U-YYYYYYYY`, since our encrypted list looks like
121 // [last4EncryptedPart, unitEncryptedPart].
122 // - signed: A list of signed parts, i.e. plaintext attributes. This would be provided if we
123 // wanted to use plaintext values as part of constructing our compound beacon. We do not
124 // provide this here; see the Complex example for an example.
125 let compound_beacon_list = vec![CompoundBeacon::builder()
126 .name("last4UnitCompound")
127 .split(".")
128 .encrypted(encrypted_parts_list)
129 .build()?];
130
131 // 4. Configure the Keystore
132 // These are the same constructions as in the Basic example, which describes these in more detail.
133
134 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
135 let key_store_config = KeyStoreConfig::builder()
136 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
137 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
138 .ddb_table_name(branch_key_ddb_table_name)
139 .logical_key_store_name(branch_key_ddb_table_name)
140 .kms_configuration(KmsConfiguration::KmsKeyArn(
141 branch_key_wrapping_kms_key_arn.to_string(),
142 ))
143 .build()?;
144
145 let key_store = keystore_client::Client::from_conf(key_store_config)?;
146
147 // 5. Create BeaconVersion.
148 // This is similar to the Basic example, except we have also provided a compoundBeaconList.
149 // We must also continue to provide all of the standard beacons that compose a compound beacon list.
150 let beacon_version = BeaconVersion::builder()
151 .standard_beacons(standard_beacon_list)
152 .compound_beacons(compound_beacon_list)
153 .version(1) // MUST be 1
154 .key_store(key_store.clone())
155 .key_source(BeaconKeySource::Single(
156 SingleKeyStore::builder()
157 // `keyId` references a beacon key.
158 // For every branch key we create in the keystore,
159 // we also create a beacon key.
160 // This beacon key is not the same as the branch key,
161 // but is created with the same ID as the branch key.
162 .key_id(branch_key_id)
163 .cache_ttl(6000)
164 .build()?,
165 ))
166 .build()?;
167 let beacon_versions = vec![beacon_version];
168
169 // 6. Create a Hierarchical Keyring
170 // This is the same configuration as in the Basic example.
171
172 let mpl_config = MaterialProvidersConfig::builder().build()?;
173 let mpl = mpl_client::Client::from_conf(mpl_config)?;
174 let kms_keyring = mpl
175 .create_aws_kms_hierarchical_keyring()
176 .branch_key_id(branch_key_id)
177 .key_store(key_store)
178 .ttl_seconds(6000)
179 .send()
180 .await?;
181
182 // 7. Configure which attributes are encrypted and/or signed when writing new items.
183 let attribute_actions_on_encrypt = HashMap::from([
184 ("work_id".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
185 ("inspection_date".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
186 (
187 "inspector_id_last4".to_string(),
188 CryptoAction::EncryptAndSign,
189 ), // Beaconized attributes must be encrypted
190 ("unit".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
191 ]);
192
193 // We do not need to define a crypto action on last4UnitCompound.
194 // We only need to define crypto actions on attributes that we pass to PutItem.
195
196 // 8. Create the DynamoDb Encryption configuration for the table we will be writing to.
197 // The beaconVersions are added to the search configuration.
198 let table_config = DynamoDbTableEncryptionConfig::builder()
199 .logical_table_name(ddb_table_name)
200 .partition_key_name("work_id")
201 .sort_key_name("inspection_date")
202 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
203 .keyring(kms_keyring)
204 .search(
205 SearchConfig::builder()
206 .write_version(1) // MUST be 1
207 .versions(beacon_versions)
208 .build()?,
209 )
210 .build()?;
211
212 // 9. Create config
213 let encryption_config = DynamoDbTablesEncryptionConfig::builder()
214 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
215 .build()?;
216
217 // 10. Create an item with both attributes used in the compound beacon.
218 let item = HashMap::from([
219 (
220 "work_id".to_string(),
221 AttributeValue::S("9ce39272-8068-4efd-a211-cd162ad65d4c".to_string()),
222 ),
223 (
224 "inspection_date".to_string(),
225 AttributeValue::S("2023-06-13".to_string()),
226 ),
227 (
228 "inspector_id_last4".to_string(),
229 AttributeValue::S("5678".to_string()),
230 ),
231 (
232 "unit".to_string(),
233 AttributeValue::S("011899988199".to_string()),
234 ),
235 ]);
236
237 // 11. If developing or debugging, verify config by checking compound beacon values directly
238 let trans = transform_client::Client::from_conf(encryption_config.clone())?;
239 let resolve_output = trans
240 .resolve_attributes()
241 .table_name(ddb_table_name)
242 .item(item.clone())
243 .version(1)
244 .send()
245 .await?;
246
247 // Verify that there are no virtual fields
248 assert_eq!(resolve_output.virtual_fields.unwrap().len(), 0);
249
250 // Verify that CompoundBeacons has the expected value
251 let compound_beacons = resolve_output.compound_beacons.unwrap();
252 assert_eq!(compound_beacons.len(), 1);
253 assert_eq!(
254 compound_beacons["last4UnitCompound"],
255 "L-5678.U-011899988199"
256 );
257 // Note : the compound beacon actually stored in the table is not "L-5678.U-011899988199"
258 // but rather something like "L-abc.U-123", as both parts are EncryptedParts
259 // and therefore the text is replaced by the associated beacon
260
261 // 12. Create a new AWS SDK DynamoDb client using the DynamoDb Encryption Interceptor above
262 let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
263 .interceptor(DbEsdkInterceptor::new(encryption_config)?)
264 .build();
265 let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
266
267 // 13. Write the item to the table
268 ddb.put_item()
269 .table_name(ddb_table_name)
270 .set_item(Some(item.clone()))
271 .send()
272 .await?;
273
274 // 14. Query for the item we just put.
275 let expression_attribute_values = HashMap::from([
276 // This query expression takes a few factors into consideration:
277 // - The configured prefix for the last 4 digits of an inspector ID is "L-";
278 // the prefix for the unit is "U-"
279 // - The configured split character, separating component parts, is "."
280 // - The default constructor adds encrypted parts in the order they are in the encrypted list, which
281 // configures `last4` to come before `unit``
282 // NOTE: We did not need to create a compound beacon for this query. This query could have also been
283 // done by querying on the partition and sort key, as was done in the Basic example.
284 // This is intended to be a simple example to demonstrate how one might set up a compound beacon.
285 // For examples where compound beacons are required, see the Complex example.
286 // The most basic extension to this example that would require a compound beacon would add a third
287 // part to the compound beacon, then query against three parts.
288 (
289 ":value".to_string(),
290 AttributeValue::S("L-5678.U-011899988199".to_string()),
291 ),
292 ]);
293
294 // GSIs are sometimes a little bit delayed, so we retry if the query comes up empty.
295 for _i in 0..10 {
296 let query_response = ddb
297 .query()
298 .table_name(ddb_table_name)
299 .index_name(GSI_NAME)
300 .key_condition_expression("last4UnitCompound = :value")
301 .set_expression_attribute_values(Some(expression_attribute_values.clone()))
302 .send()
303 .await?;
304
305 // if no results, sleep and try again
306 if query_response.items.is_none() || query_response.items.as_ref().unwrap().is_empty() {
307 std::thread::sleep(std::time::Duration::from_millis(20));
308 continue;
309 }
310
311 let attribute_values = query_response.items.unwrap();
312 // Validate only 1 item was returned: the item we just put
313 assert_eq!(attribute_values.len(), 1);
314 let returned_item = &attribute_values[0];
315 // Validate the item has the expected attributes
316 assert_eq!(
317 returned_item["inspector_id_last4"],
318 AttributeValue::S("5678".to_string())
319 );
320 assert_eq!(
321 returned_item["unit"],
322 AttributeValue::S("011899988199".to_string())
323 );
324 break;
325 }
326 println!("compound_beacon_searchable_encryption successful.");
327 Ok(())
328}
examples/searchableencryption/beacon_styles_searchable_encryption.rs (line 137)
56pub async fn put_and_query_with_beacon(branch_key_id: &str) -> Result<(), crate::BoxError> {
57 let ddb_table_name = test_utils::UNIT_INSPECTION_TEST_DDB_TABLE_NAME;
58 let branch_key_wrapping_kms_key_arn = test_utils::TEST_BRANCH_KEY_WRAPPING_KMS_KEY_ARN;
59 let branch_key_ddb_table_name = test_utils::TEST_BRANCH_KEYSTORE_DDB_TABLE_NAME;
60
61 // 1. Create Beacons.
62 let standard_beacon_list = vec![
63 // The fruit beacon allows searching on the encrypted fruit attribute
64 // We have selected 30 as an example beacon length, but you should go to
65 // https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/choosing-beacon-length.html
66 // when creating your beacons.
67 StandardBeacon::builder().name("fruit").length(30).build()?,
68 // The basket beacon allows searching on the encrypted basket attribute
69 // Basket is used as a Set, and therefore needs a beacon style to reflect that.
70 // Further, we need to be able to compare the items in basket to the fruit attribute
71 // so we `share` this beacon with `fruit`.
72 // Since we need both of these things, we use the SharedSet style.
73 StandardBeacon::builder()
74 .name("basket")
75 .length(30)
76 .style(BeaconStyle::SharedSet(
77 SharedSet::builder().other("fruit").build()?,
78 ))
79 .build()?,
80 // The dessert beacon allows searching on the encrypted dessert attribute
81 // We need to be able to compare the dessert attribute to the fruit attribute
82 // so we `share` this beacon with `fruit`.
83 StandardBeacon::builder()
84 .name("dessert")
85 .length(30)
86 .style(BeaconStyle::Shared(
87 Shared::builder().other("fruit").build()?,
88 ))
89 .build()?,
90 // The veggieBeacon allows searching on the encrypted veggies attribute
91 // veggies is used as a Set, and therefore needs a beacon style to reflect that.
92 StandardBeacon::builder()
93 .name("veggies")
94 .length(30)
95 .style(BeaconStyle::AsSet(AsSet::builder().build()?))
96 .build()?,
97 // The work_typeBeacon allows searching on the encrypted work_type attribute
98 // We only use it as part of the compound work_unit beacon,
99 // so we disable its use as a standalone beacon
100 StandardBeacon::builder()
101 .name("work_type")
102 .length(30)
103 .style(BeaconStyle::PartOnly(PartOnly::builder().build()?))
104 .build()?,
105 ];
106
107 // Here we build a compound beacon from work_id and work_type
108 // If we had tried to make a StandardBeacon from work_type, we would have seen an error
109 // because work_type is "PartOnly"
110 let encrypted_part_list = vec![EncryptedPart::builder()
111 .name("work_type")
112 .prefix("T-")
113 .build()?];
114
115 let signed_part_list = vec![SignedPart::builder().name("work_id").prefix("I-").build()?];
116
117 let compound_beacon_list = vec![CompoundBeacon::builder()
118 .name("work_unit")
119 .split(".")
120 .encrypted(encrypted_part_list)
121 .signed(signed_part_list)
122 .build()?];
123
124 // 2. Configure the Keystore
125 // These are the same constructions as in the Basic example, which describes these in more detail.
126 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
127 let key_store_config = KeyStoreConfig::builder()
128 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
129 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
130 .ddb_table_name(branch_key_ddb_table_name)
131 .logical_key_store_name(branch_key_ddb_table_name)
132 .kms_configuration(KmsConfiguration::KmsKeyArn(
133 branch_key_wrapping_kms_key_arn.to_string(),
134 ))
135 .build()?;
136
137 let key_store = keystore_client::Client::from_conf(key_store_config)?;
138
139 // 3. Create BeaconVersion.
140 // This is similar to the Basic example
141 let beacon_version = BeaconVersion::builder()
142 .standard_beacons(standard_beacon_list)
143 .compound_beacons(compound_beacon_list)
144 .version(1) // MUST be 1
145 .key_store(key_store.clone())
146 .key_source(BeaconKeySource::Single(
147 SingleKeyStore::builder()
148 // `keyId` references a beacon key.
149 // For every branch key we create in the keystore,
150 // we also create a beacon key.
151 // This beacon key is not the same as the branch key,
152 // but is created with the same ID as the branch key.
153 .key_id(branch_key_id)
154 .cache_ttl(6000)
155 .build()?,
156 ))
157 .build()?;
158 let beacon_versions = vec![beacon_version];
159
160 // 4. Create a Hierarchical Keyring
161 // This is the same configuration as in the Basic example.
162 let mpl_config = MaterialProvidersConfig::builder().build()?;
163 let mpl = mpl_client::Client::from_conf(mpl_config)?;
164 let kms_keyring = mpl
165 .create_aws_kms_hierarchical_keyring()
166 .branch_key_id(branch_key_id)
167 .key_store(key_store)
168 .ttl_seconds(6000)
169 .send()
170 .await?;
171
172 // 5. Configure which attributes are encrypted and/or signed when writing new items.
173 let attribute_actions_on_encrypt = HashMap::from([
174 ("work_id".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
175 ("inspection_date".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
176 ("dessert".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
177 ("fruit".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
178 ("basket".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
179 ("veggies".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
180 ("work_type".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
181 ]);
182
183 // 6. Create the DynamoDb Encryption configuration for the table we will be writing to.
184 // The beaconVersions are added to the search configuration.
185 let table_config = DynamoDbTableEncryptionConfig::builder()
186 .logical_table_name(ddb_table_name)
187 .partition_key_name("work_id")
188 .sort_key_name("inspection_date")
189 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
190 .keyring(kms_keyring)
191 .search(
192 SearchConfig::builder()
193 .write_version(1) // MUST be 1
194 .versions(beacon_versions)
195 .build()?,
196 )
197 .build()?;
198
199 // 7. Create config
200 let encryption_config = DynamoDbTablesEncryptionConfig::builder()
201 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
202 .build()?;
203
204 // 8. Create item one, specifically with "dessert != fruit", and "fruit in basket".
205 let item1 = HashMap::from([
206 ("work_id".to_string(), AttributeValue::S("1".to_string())),
207 (
208 "inspection_date".to_string(),
209 AttributeValue::S("2023-06-13".to_string()),
210 ),
211 ("dessert".to_string(), AttributeValue::S("cake".to_string())),
212 ("fruit".to_string(), AttributeValue::S("banana".to_string())),
213 (
214 "basket".to_string(),
215 AttributeValue::Ss(vec![
216 "banana".to_string(),
217 "apple".to_string(),
218 "pear".to_string(),
219 ]),
220 ),
221 (
222 "veggies".to_string(),
223 AttributeValue::Ss(vec![
224 "beans".to_string(),
225 "carrots".to_string(),
226 "celery".to_string(),
227 ]),
228 ),
229 (
230 "work_type".to_string(),
231 AttributeValue::S("small".to_string()),
232 ),
233 ]);
234
235 // 9. Create item two, specifically with "dessert == fruit", and "fruit not in basket".
236 let item2 = HashMap::from([
237 ("work_id".to_string(), AttributeValue::S("2".to_string())),
238 (
239 "inspection_date".to_string(),
240 AttributeValue::S("2023-06-13".to_string()),
241 ),
242 (
243 "dessert".to_string(),
244 AttributeValue::S("orange".to_string()),
245 ),
246 ("fruit".to_string(), AttributeValue::S("orange".to_string())),
247 (
248 "basket".to_string(),
249 AttributeValue::Ss(vec![
250 "strawberry".to_string(),
251 "blueberry".to_string(),
252 "blackberry".to_string(),
253 ]),
254 ),
255 (
256 "veggies".to_string(),
257 AttributeValue::Ss(vec![
258 "beans".to_string(),
259 "carrots".to_string(),
260 "peas".to_string(),
261 ]),
262 ),
263 (
264 "work_type".to_string(),
265 AttributeValue::S("large".to_string()),
266 ),
267 ]);
268
269 // 10. Create a new AWS SDK DynamoDb client using the DynamoDb Config above
270 let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
271 .interceptor(DbEsdkInterceptor::new(encryption_config)?)
272 .build();
273 let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
274
275 // 11. Add the two items
276 ddb.put_item()
277 .table_name(ddb_table_name)
278 .set_item(Some(item1.clone()))
279 .send()
280 .await?;
281
282 ddb.put_item()
283 .table_name(ddb_table_name)
284 .set_item(Some(item2.clone()))
285 .send()
286 .await?;
287
288 // 12. Test the first type of Set operation :
289 // Select records where the basket attribute holds a particular value
290 let expression_attribute_values = HashMap::from([(
291 ":value".to_string(),
292 AttributeValue::S("banana".to_string()),
293 )]);
294
295 let scan_response = ddb
296 .scan()
297 .table_name(ddb_table_name)
298 .filter_expression("contains(basket, :value)")
299 .set_expression_attribute_values(Some(expression_attribute_values.clone()))
300 .send()
301 .await?;
302
303 let attribute_values = scan_response.items.unwrap();
304 // Validate only 1 item was returned: item1
305 assert_eq!(attribute_values.len(), 1);
306 let returned_item = &attribute_values[0];
307 // Validate the item has the expected attributes
308 assert_eq!(returned_item["work_id"], item1["work_id"]);
309
310 // 13. Test the second type of Set operation :
311 // Select records where the basket attribute holds the fruit attribute
312 let scan_response = ddb
313 .scan()
314 .table_name(ddb_table_name)
315 .filter_expression("contains(basket, fruit)")
316 .send()
317 .await?;
318
319 let attribute_values = scan_response.items.unwrap();
320 // Validate only 1 item was returned: item1
321 assert_eq!(attribute_values.len(), 1);
322 let returned_item = &attribute_values[0];
323 // Validate the item has the expected attributes
324 assert_eq!(returned_item["work_id"], item1["work_id"]);
325
326 // 14. Test the third type of Set operation :
327 // Select records where the fruit attribute exists in a particular set
328 let basket3 = vec![
329 "boysenberry".to_string(),
330 "orange".to_string(),
331 "grape".to_string(),
332 ];
333 let expression_attribute_values =
334 HashMap::from([(":value".to_string(), AttributeValue::Ss(basket3))]);
335
336 let scan_response = ddb
337 .scan()
338 .table_name(ddb_table_name)
339 .filter_expression("contains(:value, fruit)")
340 .set_expression_attribute_values(Some(expression_attribute_values.clone()))
341 .send()
342 .await?;
343
344 let attribute_values = scan_response.items.unwrap();
345 // Validate only 1 item was returned: item1
346 assert_eq!(attribute_values.len(), 1);
347 let returned_item = &attribute_values[0];
348 // Validate the item has the expected attributes
349 assert_eq!(returned_item["work_id"], item2["work_id"]);
350
351 // 15. Test a Shared search. Select records where the dessert attribute matches the fruit attribute
352 let scan_response = ddb
353 .scan()
354 .table_name(ddb_table_name)
355 .filter_expression("dessert = fruit")
356 .send()
357 .await?;
358
359 let attribute_values = scan_response.items.unwrap();
360 // Validate only 1 item was returned: item1
361 assert_eq!(attribute_values.len(), 1);
362 let returned_item = &attribute_values[0];
363 // Validate the item has the expected attributes
364 assert_eq!(returned_item["work_id"], item2["work_id"]);
365
366 // 15. Test the AsSet attribute 'veggies' :
367 // Select records where the veggies attribute holds a particular value
368 let expression_attribute_values =
369 HashMap::from([(":value".to_string(), AttributeValue::S("peas".to_string()))]);
370
371 let scan_response = ddb
372 .scan()
373 .table_name(ddb_table_name)
374 .filter_expression("contains(veggies, :value)")
375 .set_expression_attribute_values(Some(expression_attribute_values.clone()))
376 .send()
377 .await?;
378
379 let attribute_values = scan_response.items.unwrap();
380 // Validate only 1 item was returned: item1
381 assert_eq!(attribute_values.len(), 1);
382 let returned_item = &attribute_values[0];
383 // Validate the item has the expected attributes
384 assert_eq!(returned_item["work_id"], item2["work_id"]);
385
386 // 16. Test the compound beacon 'work_unit' :
387 let expression_attribute_values = HashMap::from([(
388 ":value".to_string(),
389 AttributeValue::S("I-1.T-small".to_string()),
390 )]);
391
392 let scan_response = ddb
393 .scan()
394 .table_name(ddb_table_name)
395 .filter_expression("work_unit = :value")
396 .set_expression_attribute_values(Some(expression_attribute_values.clone()))
397 .send()
398 .await?;
399
400 let attribute_values = scan_response.items.unwrap();
401 // Validate only 1 item was returned: item1
402 assert_eq!(attribute_values.len(), 1);
403 let returned_item = &attribute_values[0];
404 // Validate the item has the expected attributes
405 assert_eq!(returned_item["work_id"], item1["work_id"]);
406
407 println!("beacon_styles_searchable_encryption successful.");
408 Ok(())
409}
examples/searchableencryption/virtual_beacon_searchable_encryption.rs (line 220)
119pub async fn put_and_query_with_beacon(branch_key_id: &str) -> Result<(), crate::BoxError> {
120 let ddb_table_name = test_utils::SIMPLE_BEACON_TEST_DDB_TABLE_NAME;
121 let branch_key_wrapping_kms_key_arn = test_utils::TEST_BRANCH_KEY_WRAPPING_KMS_KEY_ARN;
122 let branch_key_ddb_table_name = test_utils::TEST_BRANCH_KEYSTORE_DDB_TABLE_NAME;
123
124 // 1. Construct a length-1 prefix virtual transform.
125 // `hasTestResult` is a binary attribute, containing either `true` or `false`.
126 // As an example to demonstrate virtual transforms, we will truncate the value
127 // of `hasTestResult` in the virtual field to the length-1 prefix of the binary value, i.e.:
128 // - "true" -> "t"
129 // - "false -> "f"
130 // This is not necessary. This is done as a demonstration of virtual transforms.
131 // Virtual transform operations treat all attributes as strings
132 // (i.e. the boolean value `true` is interpreted as a string "true"),
133 // so its length-1 prefix is just "t".
134
135 let length1_prefix_virtual_transform_list = vec![VirtualTransform::Prefix(
136 GetPrefix::builder().length(1).build()?,
137 )];
138
139 // 2. Construct the VirtualParts required for the VirtualField
140 let has_test_result_part = VirtualPart::builder()
141 .loc("hasTestResult")
142 .trans(length1_prefix_virtual_transform_list)
143 .build()?;
144
145 let state_part = VirtualPart::builder().loc("state").build()?;
146 // Note that we do not apply any transform to the `state` attribute,
147 // and the virtual field will read in the attribute as-is.
148
149 // 3. Construct the VirtualField from the VirtualParts
150 // Note that the order that virtual parts are added to the virtualPartList
151 // dictates the order in which they are concatenated to build the virtual field.
152 // You must add virtual parts in the same order on write as you do on read.
153 let virtual_part_list = vec![state_part, has_test_result_part];
154
155 let state_and_has_test_result_field = VirtualField::builder()
156 .name("stateAndHasTestResult")
157 .parts(virtual_part_list)
158 .build()?;
159
160 let virtual_field_list = vec![state_and_has_test_result_field];
161
162 // 4. Configure our beacon.
163 // The virtual field is assumed to hold a US 2-letter state abbreviation
164 // (56 possible values = 50 states + 6 territories) concatenated with a binary attribute
165 // (2 possible values: true/false hasTestResult field), we expect a population size of
166 // 56 * 2 = 112 possible values.
167 // We will also assume that these values are reasonably well-distributed across
168 // customer IDs. In practice, this will not be true. We would expect
169 // more populous states to appear more frequently in the database.
170 // A more complex analysis would show that a stricter upper bound
171 // is necessary to account for this by hiding information from the
172 // underlying distribution.
173 //
174 // This link provides guidance for choosing a beacon length:
175 // https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/choosing-beacon-length.html
176 // We follow the guidance in the link above to determine reasonable bounds for beacon length:
177 // - min: log(sqrt(112))/log(2) ~= 3.4, round down to 3
178 // - max: log((112/2))/log(2) ~= 5.8, round up to 6
179 // You will somehow need to round results to a nearby integer.
180 // We choose to round to the nearest integer; you might consider a different rounding approach.
181 // Rounding up will return fewer expected "false positives" in queries,
182 // leading to fewer decrypt calls and better performance,
183 // but it is easier to identify which beacon values encode distinct plaintexts.
184 // Rounding down will return more expected "false positives" in queries,
185 // leading to more decrypt calls and worse performance,
186 // but it is harder to identify which beacon values encode distinct plaintexts.
187 // We can choose a beacon length between 3 and 6:
188 // - Closer to 3, we expect more "false positives" to be returned,
189 // making it harder to identify which beacon values encode distinct plaintexts,
190 // but leading to more decrypt calls and worse performance
191 // - Closer to 6, we expect fewer "false positives" returned in queries,
192 // leading to fewer decrypt calls and better performance,
193 // but it is easier to identify which beacon values encode distinct plaintexts.
194 // As an example, we will choose 5.
195 // Values stored in aws_dbe_b_stateAndHasTestResult will be 5 bits long (0x00 - 0x1f)
196 // There will be 2^5 = 32 possible HMAC values.
197 // With a well-distributed dataset (112 values), for a particular beacon we expect
198 // (112/32) = 3.5 combinations of abbreviation + true/false attribute
199 // sharing that beacon value.
200 let standard_beacon_list = vec![StandardBeacon::builder()
201 .name("stateAndHasTestResult")
202 .length(5)
203 .build()?];
204
205 // 5. Configure Keystore.
206 // This example expects that you have already set up a KeyStore with a single branch key.
207 // See the "CreateKeyStoreTableExample" and "CreateKeyStoreKeyExample" files for how to do this.
208 // After you create a branch key, you should persist its ID for use in this example.
209 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
210 let key_store_config = KeyStoreConfig::builder()
211 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
212 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
213 .ddb_table_name(branch_key_ddb_table_name)
214 .logical_key_store_name(branch_key_ddb_table_name)
215 .kms_configuration(KmsConfiguration::KmsKeyArn(
216 branch_key_wrapping_kms_key_arn.to_string(),
217 ))
218 .build()?;
219
220 let key_store = keystore_client::Client::from_conf(key_store_config)?;
221
222 // 6. Create BeaconVersion.
223 // The BeaconVersion inside the list holds the list of beacons on the table.
224 // The BeaconVersion also stores information about the keystore.
225 // BeaconVersion must be provided:
226 // - keyStore: The keystore configured in the previous step.
227 // - keySource: A configuration for the key source.
228 // For simple use cases, we can configure a 'singleKeySource' which
229 // statically configures a single beaconKey. That is the approach this example takes.
230 // For use cases where you want to use different beacon keys depending on the data
231 // (for example if your table holds data for multiple tenants, and you want to use
232 // a different beacon key per tenant), look into configuring a MultiKeyStore:
233 // https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-encryption-multitenant.html
234 // We also provide our standard beacon list and virtual fields here.
235 let beacon_version = BeaconVersion::builder()
236 .standard_beacons(standard_beacon_list)
237 .virtual_fields(virtual_field_list)
238 .version(1) // MUST be 1
239 .key_store(key_store.clone())
240 .key_source(BeaconKeySource::Single(
241 SingleKeyStore::builder()
242 // `keyId` references a beacon key.
243 // For every branch key we create in the keystore,
244 // we also create a beacon key.
245 // This beacon key is not the same as the branch key,
246 // but is created with the same ID as the branch key.
247 .key_id(branch_key_id)
248 .cache_ttl(6000)
249 .build()?,
250 ))
251 .build()?;
252 let beacon_versions = vec![beacon_version];
253
254 // 7. Create a Hierarchical Keyring
255 // This is a KMS keyring that utilizes the keystore table.
256 // This config defines how items are encrypted and decrypted.
257 // NOTE: You should configure this to use the same keystore as your search config.
258 let mpl_config = MaterialProvidersConfig::builder().build()?;
259 let mpl = mpl_client::Client::from_conf(mpl_config)?;
260 let kms_keyring = mpl
261 .create_aws_kms_hierarchical_keyring()
262 .branch_key_id(branch_key_id)
263 .key_store(key_store)
264 .ttl_seconds(6000)
265 .send()
266 .await?;
267
268 // 8. Configure which attributes are encrypted and/or signed when writing new items.
269 // For each attribute that may exist on the items we plan to write to our DynamoDbTable,
270 // we must explicitly configure how they should be treated during item encryption:
271 // - ENCRYPT_AND_SIGN: The attribute is encrypted and included in the signature
272 // - SIGN_ONLY: The attribute not encrypted, but is still included in the signature
273 // - DO_NOTHING: The attribute is not encrypted and not included in the signature
274 // Any attributes that will be used in beacons must be configured as ENCRYPT_AND_SIGN.
275 let attribute_actions_on_encrypt = HashMap::from([
276 ("customer_id".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
277 ("create_time".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
278 ("state".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
279 ("hasTestResult".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
280 ]);
281
282 // 9. Create the DynamoDb Encryption configuration for the table we will be writing to.
283 // The beaconVersions are added to the search configuration.
284 let table_config = DynamoDbTableEncryptionConfig::builder()
285 .logical_table_name(ddb_table_name)
286 .partition_key_name("customer_id")
287 .sort_key_name("create_time")
288 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
289 .keyring(kms_keyring)
290 .search(
291 SearchConfig::builder()
292 .write_version(1) // MUST be 1
293 .versions(beacon_versions)
294 .build()?,
295 )
296 .build()?;
297
298 // 10. Create config
299 let encryption_config = DynamoDbTablesEncryptionConfig::builder()
300 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
301 .build()?;
302
303 // 11. Create test items
304
305 // Create item with hasTestResult=true
306 let item_with_has_test_result = HashMap::from([
307 (
308 "customer_id".to_string(),
309 AttributeValue::S("ABC-123".to_string()),
310 ),
311 (
312 "create_time".to_string(),
313 AttributeValue::N("1681495205".to_string()),
314 ),
315 ("state".to_string(), AttributeValue::S("CA".to_string())),
316 ("hasTestResult".to_string(), AttributeValue::Bool(true)),
317 ]);
318
319 // Create item with hasTestResult=false
320 let item_with_no_has_test_result = HashMap::from([
321 (
322 "customer_id".to_string(),
323 AttributeValue::S("DEF-456".to_string()),
324 ),
325 (
326 "create_time".to_string(),
327 AttributeValue::N("1681495205".to_string()),
328 ),
329 ("state".to_string(), AttributeValue::S("CA".to_string())),
330 ("hasTestResult".to_string(), AttributeValue::Bool(false)),
331 ]);
332
333 // 12. If developing or debugging, verify config by checking virtual field values directly
334 let trans = transform_client::Client::from_conf(encryption_config.clone())?;
335 let resolve_output = trans
336 .resolve_attributes()
337 .table_name(ddb_table_name)
338 .item(item_with_has_test_result.clone())
339 .version(1)
340 .send()
341 .await?;
342
343 // CompoundBeacons is empty because we have no Compound Beacons configured
344 assert_eq!(resolve_output.compound_beacons.unwrap().len(), 0);
345
346 // Verify that VirtualFields has the expected value
347 let virtual_fields = resolve_output.virtual_fields.unwrap();
348 assert_eq!(virtual_fields.len(), 1);
349 assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");
350
351 // 13. Create a new AWS SDK DynamoDb client using the DynamoDb Encryption Interceptor above
352 let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
353 .interceptor(DbEsdkInterceptor::new(encryption_config)?)
354 .build();
355 let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
356
357 // 14. Put two items into our table using the above client.
358 // The two items will differ only in their `customer_id` attribute (primary key)
359 // and their `hasTestResult` attribute.
360 // We will query against these items to demonstrate how to use our setup above
361 // to query against our `stateAndHasTestResult` beacon.
362 // Before the item gets sent to DynamoDb, it will be encrypted
363 // client-side, according to our configuration.
364 // Since our configuration includes a beacon on a virtual field named
365 // `stateAndHasTestResult`, the client will add an attribute
366 // to the item with name `aws_dbe_b_stateAndHasTestResult`.
367 // Its value will be an HMAC truncated to as many bits as the
368 // beacon's `length` parameter; i.e. 5.
369
370 ddb.put_item()
371 .table_name(ddb_table_name)
372 .set_item(Some(item_with_has_test_result.clone()))
373 .send()
374 .await?;
375
376 ddb.put_item()
377 .table_name(ddb_table_name)
378 .set_item(Some(item_with_no_has_test_result.clone()))
379 .send()
380 .await?;
381
382 // 15. Query by stateAndHasTestResult attribute.
383 // Note that we are constructing the query as if we were querying on plaintext values.
384 // However, the DDB encryption client will detect that this attribute name has a beacon configured.
385 // The client will add the beaconized attribute name and attribute value to the query,
386 // and transform the query to use the beaconized name and value.
387 // Internally, the client will query for and receive all items with a matching HMAC value in the beacon field.
388 // This may include a number of "false positives" with different ciphertext, but the same truncated HMAC.
389 // e.g. if truncate(HMAC("CAt"), 5) == truncate(HMAC("DCf"), 5), the query will return both items.
390 // The client will decrypt all returned items to determine which ones have the expected attribute values,
391 // and only surface items with the correct plaintext to the user.
392 // This procedure is internal to the client and is abstracted away from the user;
393 // e.g. the user will only see "CAt" and never "DCf", though the actual query returned both.
394 let expression_attribute_values = HashMap::from([
395 // We are querying for the item with `state`="CA" and `hasTestResult`=`true`.
396 // Since we added virtual parts as `state` then `hasTestResult`,
397 // we must write our query expression in the same order.
398 // We constructed our virtual field as `state`+`hasTestResult`,
399 // so we add the two parts in that order.
400 // Since we also created a virtual transform that truncated `hasTestResult`
401 // to its length-1 prefix, i.e. "true" -> "t",
402 // we write that field as its length-1 prefix in the query.
403 (
404 ":stateAndHasTestResult".to_string(),
405 AttributeValue::S("CAt".to_string()),
406 ),
407 ]);
408
409 // GSIs are sometimes a little bit delayed, so we retry if the query comes up empty.
410 for _i in 0..10 {
411 let query_response = ddb
412 .query()
413 .table_name(ddb_table_name)
414 .index_name(GSI_NAME)
415 .key_condition_expression("stateAndHasTestResult = :stateAndHasTestResult")
416 .set_expression_attribute_values(Some(expression_attribute_values.clone()))
417 .send()
418 .await?;
419
420 // if no results, sleep and try again
421 if query_response.items.is_none() || query_response.items.as_ref().unwrap().is_empty() {
422 std::thread::sleep(std::time::Duration::from_millis(20));
423 continue;
424 }
425
426 let attribute_values = query_response.items.unwrap();
427 // Validate only 1 item was returned: the item we just put
428 assert_eq!(attribute_values.len(), 1);
429 let returned_item = &attribute_values[0];
430 // Validate the item has the expected attributes
431 assert_eq!(returned_item["state"], AttributeValue::S("CA".to_string()));
432 assert_eq!(returned_item["hasTestResult"], AttributeValue::Bool(true));
433 break;
434 }
435 println!("virtual_beacon_searchable_encryption successful.");
436 Ok(())
437}
examples/searchableencryption/basic_searchable_encryption.rs (line 167)
54pub async fn put_and_query_with_beacon(branch_key_id: &str) -> Result<(), crate::BoxError> {
55 // The whole thing is wrapped in a future to ensure that everything is Send and Sync
56 let future = async move {
57 let ddb_table_name = test_utils::UNIT_INSPECTION_TEST_DDB_TABLE_NAME;
58 let branch_key_wrapping_kms_key_arn = test_utils::TEST_BRANCH_KEY_WRAPPING_KMS_KEY_ARN;
59 let branch_key_ddb_table_name = test_utils::TEST_BRANCH_KEYSTORE_DDB_TABLE_NAME;
60
61 // 1. Configure Beacons.
62 // The beacon name must be the name of a table attribute that will be encrypted.
63 // The `length` parameter dictates how many bits are in the beacon attribute value.
64 // The following link provides guidance on choosing a beacon length:
65 // https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/choosing-beacon-length.html
66
67 // The configured DDB table has a GSI on the `aws_dbe_b_inspector_id_last4` AttributeName.
68 // This field holds the last 4 digits of an inspector ID.
69 // For our example, this field may range from 0 to 9,999 (10,000 possible values).
70 // For our example, we assume a full inspector ID is an integer
71 // ranging from 0 to 99,999,999. We do not assume that the full inspector ID's
72 // values are uniformly distributed across its range of possible values.
73 // In many use cases, the prefix of an identifier encodes some information
74 // about that identifier (e.g. zipcode and SSN prefixes encode geographic
75 // information), while the suffix does not and is more uniformly distributed.
76 // We will assume that the inspector ID field matches a similar use case.
77 // So for this example, we only store and use the last
78 // 4 digits of the inspector ID, which we assume is uniformly distributed.
79 // Since the full ID's range is divisible by the range of the last 4 digits,
80 // then the last 4 digits of the inspector ID are uniformly distributed
81 // over the range from 0 to 9,999.
82 // See our documentation for why you should avoid creating beacons over non-uniform distributions
83 // https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-encryption.html#are-beacons-right-for-me
84 // A single inspector ID suffix may be assigned to multiple `work_id`s.
85 //
86 // This link provides guidance for choosing a beacon length:
87 // https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/choosing-beacon-length.html
88 // We follow the guidance in the link above to determine reasonable bounds
89 // for the length of a beacon on the last 4 digits of an inspector ID:
90 // - min: log(sqrt(10,000))/log(2) ~= 6.6, round up to 7
91 // - max: log((10,000/2))/log(2) ~= 12.3, round down to 12
92 // You will somehow need to round results to a nearby integer.
93 // We choose to round to the nearest integer; you might consider a different rounding approach.
94 // Rounding up will return fewer expected "false positives" in queries,
95 // leading to fewer decrypt calls and better performance,
96 // but it is easier to identify which beacon values encode distinct plaintexts.
97 // Rounding down will return more expected "false positives" in queries,
98 // leading to more decrypt calls and worse performance,
99 // but it is harder to identify which beacon values encode distinct plaintexts.
100 // We can choose a beacon length between 7 and 12:
101 // - Closer to 7, we expect more "false positives" to be returned,
102 // making it harder to identify which beacon values encode distinct plaintexts,
103 // but leading to more decrypt calls and worse performance
104 // - Closer to 12, we expect fewer "false positives" returned in queries,
105 // leading to fewer decrypt calls and better performance,
106 // but it is easier to identify which beacon values encode distinct plaintexts.
107 // As an example, we will choose 10.
108 //
109 // Values stored in aws_dbe_b_inspector_id_last4 will be 10 bits long (0x000 - 0x3ff)
110 // There will be 2^10 = 1,024 possible HMAC values.
111 // With a sufficiently large number of well-distributed inspector IDs,
112 // for a particular beacon we expect (10,000/1,024) ~= 9.8 4-digit inspector ID suffixes
113 // sharing that beacon value.
114 let last4_beacon = StandardBeacon::builder()
115 .name("inspector_id_last4")
116 .length(10)
117 .build()?;
118
119 // The configured DDB table has a GSI on the `aws_dbe_b_unit` AttributeName.
120 // This field holds a unit serial number.
121 // For this example, this is a 12-digit integer from 0 to 999,999,999,999 (10^12 possible values).
122 // We will assume values for this attribute are uniformly distributed across this range.
123 // A single unit serial number may be assigned to multiple `work_id`s.
124 //
125 // This link provides guidance for choosing a beacon length:
126 // https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/choosing-beacon-length.html
127 // We follow the guidance in the link above to determine reasonable bounds
128 // for the length of a beacon on a unit serial number:
129 // - min: log(sqrt(999,999,999,999))/log(2) ~= 19.9, round up to 20
130 // - max: log((999,999,999,999/2))/log(2) ~= 38.9, round up to 39
131 // We can choose a beacon length between 20 and 39:
132 // - Closer to 20, we expect more "false positives" to be returned,
133 // making it harder to identify which beacon values encode distinct plaintexts,
134 // but leading to more decrypt calls and worse performance
135 // - Closer to 39, we expect fewer "false positives" returned in queries,
136 // leading to fewer decrypt calls and better performance,
137 // but it is easier to identify which beacon values encode distinct plaintexts.
138 // As an example, we will choose 30.
139 //
140 // Values stored in aws_dbe_b_unit will be 30 bits long (0x00000000 - 0x3fffffff)
141 // There will be 2^30 = 1,073,741,824 ~= 1.1B possible HMAC values.
142 // With a sufficiently large number of well-distributed inspector IDs,
143 // for a particular beacon we expect (10^12/2^30) ~= 931.3 unit serial numbers
144 // sharing that beacon value.
145 let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;
146
147 let standard_beacon_list = vec![last4_beacon, unit_beacon];
148
149 // 2. Configure Keystore.
150 // The keystore is a separate DDB table where the client stores encryption and decryption materials.
151 // In order to configure beacons on the DDB client, you must configure a keystore.
152 //
153 // This example expects that you have already set up a KeyStore with a single branch key.
154 // See the "Create KeyStore Table Example" and "Create KeyStore Key Example" for how to do this.
155 // After you create a branch key, you should persist its ID for use in this example.
156 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
157 let key_store_config = KeyStoreConfig::builder()
158 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
159 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
160 .ddb_table_name(branch_key_ddb_table_name)
161 .logical_key_store_name(branch_key_ddb_table_name)
162 .kms_configuration(KmsConfiguration::KmsKeyArn(
163 branch_key_wrapping_kms_key_arn.to_string(),
164 ))
165 .build()?;
166
167 let key_store = keystore_client::Client::from_conf(key_store_config)?;
168
169 // 3. Create BeaconVersion.
170 // The BeaconVersion inside the list holds the list of beacons on the table.
171 // The BeaconVersion also stores information about the keystore.
172 // BeaconVersion must be provided:
173 // - keyStore: The keystore configured in step 2.
174 // - keySource: A configuration for the key source.
175 // For simple use cases, we can configure a 'singleKeySource' which
176 // statically configures a single beaconKey. That is the approach this example takes.
177 // For use cases where you want to use different beacon keys depending on the data
178 // (for example if your table holds data for multiple tenants, and you want to use
179 // a different beacon key per tenant), look into configuring a MultiKeyStore:
180 // https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/searchable-encryption-multitenant.html
181
182 let beacon_version = BeaconVersion::builder()
183 .standard_beacons(standard_beacon_list)
184 .version(1) // MUST be 1
185 .key_store(key_store.clone())
186 .key_source(BeaconKeySource::Single(
187 SingleKeyStore::builder()
188 // `keyId` references a beacon key.
189 // For every branch key we create in the keystore,
190 // we also create a beacon key.
191 // This beacon key is not the same as the branch key,
192 // but is created with the same ID as the branch key.
193 .key_id(branch_key_id)
194 .cache_ttl(6000)
195 .build()?,
196 ))
197 .build()?;
198 let beacon_versions = vec![beacon_version];
199
200 // 4. Create a Hierarchical Keyring
201 // This is a KMS keyring that utilizes the keystore table.
202 // This config defines how items are encrypted and decrypted.
203 // NOTE: You should configure this to use the same keystore as your search config.
204 let provider_config = MaterialProvidersConfig::builder().build()?;
205 let mat_prov = client::Client::from_conf(provider_config)?;
206 let kms_keyring = mat_prov
207 .create_aws_kms_hierarchical_keyring()
208 .branch_key_id(branch_key_id)
209 .key_store(key_store)
210 .ttl_seconds(6000)
211 .send()
212 .await?;
213
214 // 5. Configure which attributes are encrypted and/or signed when writing new items.
215 // For each attribute that may exist on the items we plan to write to our DynamoDbTable,
216 // we must explicitly configure how they should be treated during item encryption:
217 // - ENCRYPT_AND_SIGN: The attribute is encrypted and included in the signature
218 // - SIGN_ONLY: The attribute not encrypted, but is still included in the signature
219 // - DO_NOTHING: The attribute is not encrypted and not included in the signature
220 // Any attributes that will be used in beacons must be configured as ENCRYPT_AND_SIGN.
221 let attribute_actions_on_encrypt = HashMap::from([
222 ("work_id".to_string(), CryptoAction::SignOnly), // Our partition attribute must be SIGN_ONLY
223 ("inspection_date".to_string(), CryptoAction::SignOnly), // Our sort attribute must be SIGN_ONLY
224 (
225 "inspector_id_last4".to_string(),
226 CryptoAction::EncryptAndSign,
227 ), // Beaconized attributes must be encrypted
228 ("unit".to_string(), CryptoAction::EncryptAndSign), // Beaconized attributes must be encrypted
229 ]);
230
231 // 6. Create the DynamoDb Encryption configuration for the table we will be writing to.
232 // The beaconVersions are added to the search configuration.
233 let table_config = DynamoDbTableEncryptionConfig::builder()
234 .logical_table_name(ddb_table_name)
235 .partition_key_name("work_id")
236 .sort_key_name("inspection_date")
237 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
238 .keyring(kms_keyring)
239 .search(
240 SearchConfig::builder()
241 .write_version(1) // MUST be 1
242 .versions(beacon_versions)
243 .build()?,
244 )
245 .build()?;
246
247 let table_configs = DynamoDbTablesEncryptionConfig::builder()
248 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(), table_config)]))
249 .build()?;
250
251 // 7. Create a new AWS SDK DynamoDb client using the TableEncryptionConfigs
252 let sdk_config = aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
253 let dynamo_config = aws_sdk_dynamodb::config::Builder::from(&sdk_config)
254 .interceptor(DbEsdkInterceptor::new(table_configs)?)
255 .build();
256 let ddb = aws_sdk_dynamodb::Client::from_conf(dynamo_config);
257
258 // 8. Put an item into our table using the above client.
259 // Before the item gets sent to DynamoDb, it will be encrypted
260 // client-side, according to our configuration.
261 // Since our configuration includes beacons for `inspector_id_last4` and `unit`,
262 // the client will add two additional attributes to the item. These attributes will have names
263 // `aws_dbe_b_inspector_id_last4` and `aws_dbe_b_unit`. Their values will be HMACs
264 // truncated to as many bits as the beacon's `length` parameter; e.g.
265 // aws_dbe_b_inspector_id_last4 = truncate(HMAC("4321"), 10)
266 // aws_dbe_b_unit = truncate(HMAC("123456789012"), 30)
267
268 let item = HashMap::from([
269 (
270 "work_id".to_string(),
271 AttributeValue::S("1313ba89-5661-41eb-ba6c-cb1b4cb67b2d".to_string()),
272 ),
273 (
274 "inspection_date".to_string(),
275 AttributeValue::S("2023-06-13".to_string()),
276 ),
277 (
278 "inspector_id_last4".to_string(),
279 AttributeValue::S("4321".to_string()),
280 ),
281 (
282 "unit".to_string(),
283 AttributeValue::S("123456789012".to_string()),
284 ),
285 ]);
286
287 ddb.put_item()
288 .table_name(ddb_table_name)
289 .set_item(Some(item.clone()))
290 .send()
291 .await?;
292
293 // 9. Query for the item we just put.
294 // Note that we are constructing the query as if we were querying on plaintext values.
295 // However, the DDB encryption client will detect that this attribute name has a beacon configured.
296 // The client will add the beaconized attribute name and attribute value to the query,
297 // and transform the query to use the beaconized name and value.
298 // Internally, the client will query for and receive all items with a matching HMAC value in the beacon field.
299 // This may include a number of "false positives" with different ciphertext, but the same truncated HMAC.
300 // e.g. if truncate(HMAC("123456789012"), 30)
301 // == truncate(HMAC("098765432109"), 30),
302 // the query will return both items.
303 // The client will decrypt all returned items to determine which ones have the expected attribute values,
304 // and only surface items with the correct plaintext to the user.
305 // This procedure is internal to the client and is abstracted away from the user;
306 // e.g. the user will only see "123456789012" and never
307 // "098765432109", though the actual query returned both.
308 let expression_attributes_names = HashMap::from([
309 ("#last4".to_string(), "inspector_id_last4".to_string()),
310 ("#unit".to_string(), "unit".to_string()),
311 ]);
312
313 let expression_attribute_values = HashMap::from([
314 (":last4".to_string(), AttributeValue::S("4321".to_string())),
315 (
316 ":unit".to_string(),
317 AttributeValue::S("123456789012".to_string()),
318 ),
319 ]);
320
321 // GSIs do not update instantly
322 // so if the results come back empty
323 // we retry after a short sleep
324 for _i in 0..10 {
325 let query_response = ddb
326 .query()
327 .table_name(ddb_table_name)
328 .index_name(GSI_NAME)
329 .key_condition_expression("#last4 = :last4 and #unit = :unit")
330 .set_expression_attribute_names(Some(expression_attributes_names.clone()))
331 .set_expression_attribute_values(Some(expression_attribute_values.clone()))
332 .send()
333 .await?;
334
335 // if no results, sleep and try again
336 if query_response.items.is_none() || query_response.items.as_ref().unwrap().is_empty() {
337 std::thread::sleep(std::time::Duration::from_millis(20));
338 continue;
339 }
340
341 let attribute_values = query_response.items.unwrap();
342 // Validate only 1 item was returned: the item we just put
343 assert_eq!(attribute_values.len(), 1);
344 let returned_item = &attribute_values[0];
345 // Validate the item has the expected attributes
346 assert_eq!(
347 returned_item["inspector_id_last4"],
348 AttributeValue::S("4321".to_string())
349 );
350 assert_eq!(
351 returned_item["unit"],
352 AttributeValue::S("123456789012".to_string())
353 );
354 break;
355 }
356 println!("basic_searchable_encryption successful.");
357 Ok(())
358 };
359 future.await
360}
Additional examples can be found in:
Trait Implementations§
impl StructuralPartialEq for Client
Auto Trait Implementations§
impl Freeze for Client
impl !RefUnwindSafe for Client
impl Send for Client
impl Sync for Client
impl Unpin for Client
impl !UnwindSafe for Client
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> Instrument for T
impl<T> Instrument for T
Source§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
Source§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreCreates a shared type from an unshared type.