Expand description
§automl with smartcore
AutoML (Automated Machine Learning) streamlines machine learning workflows, making them more accessible and
efficient
for users of all experience levels. This crate extends the smartcore machine learning
framework, providing utilities to quickly train, compare, and deploy models.
§Install
Add automl to your Cargo.toml to get started:
Stable Version
automl = "0.3.0"Latest Development Version
automl = { git = "https://github.com/cmccomb/rust-automl" }§Example Usage
Here’s a quick example to illustrate how AutoML can simplify model training and comparison:
ⓘ
let dataset = smartcore::dataset::breast_cancer::load_dataset();
let settings = automl::Settings::default_classification();
let mut classifier = automl::SupervisedModel::new(dataset, settings);
classifier.train();will perform a comparison of classifier models using cross-validation. Printing the classifier object will yield:
┌────────────────────────────────┬─────────────────────┬───────────────────┬──────────────────┐
│ Model │ Time │ Training Accuracy │ Testing Accuracy │
╞════════════════════════════════╪═════════════════════╪═══════════════════╪══════════════════╡
│ Random Forest Classifier │ 835ms 393us 583ns │ 1.00 │ 0.96 │
├────────────────────────────────┼─────────────────────┼───────────────────┼──────────────────┤
│ Logistic Regression Classifier │ 620ms 714us 583ns │ 0.97 │ 0.95 │
├────────────────────────────────┼─────────────────────┼───────────────────┼──────────────────┤
│ Gaussian Naive Bayes │ 6ms 529us │ 0.94 │ 0.93 │
├────────────────────────────────┼─────────────────────┼───────────────────┼──────────────────┤
│ Categorical Naive Bayes │ 2ms 922us 250ns │ 0.96 │ 0.93 │
├────────────────────────────────┼─────────────────────┼───────────────────┼──────────────────┤
│ Decision Tree Classifier │ 15ms 404us 750ns │ 1.00 │ 0.93 │
├────────────────────────────────┼─────────────────────┼───────────────────┼──────────────────┤
│ KNN Classifier │ 28ms 874us 208ns │ 0.96 │ 0.92 │
├────────────────────────────────┼─────────────────────┼───────────────────┼──────────────────┤
│ Support Vector Classifier │ 4s 187ms 61us 708ns │ 0.57 │ 0.57 │
└────────────────────────────────┴─────────────────────┴───────────────────┴──────────────────┘You can then perform inference using the best model with the predict method.
§Features
This crate has several features that add some additional methods.
| Feature | Description |
|---|---|
nd | Adds methods for predicting/reading data using ndarray. |
csv | Adds methods for predicting/reading data from a .csv using polars. |
§Capabilities
- Feature Engineering
- PCA
- SVD
- Interaction terms
- Polynomial terms
- Regression
- Decision Tree Regression
- KNN Regression
- Random Forest Regression
- Linear Regression
- Ridge Regression
- LASSO
- Elastic Net
- Support Vector Regression
- Classification
- Random Forest Classification
- Decision Tree Classification
- Support Vector Classification
- Logistic Regression
- KNN Classification
- Gaussian Naive Bayes
- Meta-learning
- Blending
- Save and load settings
- Save and load models
Re-exports§
pub use settings::ClassificationSettings;pub use settings::ClusteringSettings;pub use settings::RegressionSettings;pub use algorithms::ClassificationAlgorithm;pub use algorithms::ClusteringAlgorithm;pub use algorithms::RegressionAlgorithm;pub use model::ClassificationModel;pub use model::ClusteringModel;pub use model::ModelError;pub use model::ModelResult;pub use model::RegressionModel;pub use model::SupervisedModel;
Modules§
- algorithms
- Algorithm enumerations and helpers. Algorithm enumerations and helpers for model training.
- cookbook
- A cookbook of common
AutoMLtasks - metrics
- Metric re-exports. Re-exported clustering metrics.
- model
- Model definitions and implementations. Types and implementations for machine learning models.
- settings
- Settings customization
- utils
- Utility functions for the crate.
Structs§
- Dense
Matrix - Dense matrix