pub trait Dualize {
fn var(&self) -> Dual;
fn par(&self) -> Dual;
fn derive<DF>(&self, func: &DF) -> Dual
where
DF: DualFunction,
{ ... }
}Expand description
Construct autodifferentiation-specific dual numbers and evaluate functions over them
Required Methods
Provided Methods
fn derive<DF>(&self, func: &DF) -> Dual where
DF: DualFunction,
fn derive<DF>(&self, func: &DF) -> Dual where
DF: DualFunction,
Apply DualFunction to a value treated as dual variable
Examples found in repository?
examples/ideal_gas.rs (line 36)
≺ ≻
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
fn main() {
let [pressure, volume, temperature, quantity]: [f64; 4] = [1., 1.618, 300., 1.];
let calc_residual_dual =
|x| calc_ideal_gas_generic(x, volume.par(), temperature.par(), quantity.par());
let residual_generic = pressure.derive(&calc_residual_dual);
print_state_linearization(residual_generic.val, residual_generic.dual, pressure);
let pressure_newtoned = newton_iterations(calc_residual_dual, pressure, 1e-3, 10);
match pressure_newtoned {
Ok(pressure_refined) => {
println!("{pressure} refined to {pressure_refined} using Newton method")
}
Err(ConvergenceError(err)) => {
println!("Not converged Newton iterations:");
match err {
Some(err) => println!("----with an error of {}", err),
None => println!("----function was not evaluated"),
}
}
}
}
fn print_state_linearization(value: f64, deriv: f64, origin: f64) {
println!("Linearization: {value} + {deriv} * (pressure - {origin})");
}
fn _calc_ideal_gas(pressure: f64, volume: f64, temperature: f64, quantity: f64) -> f64 {
pressure * volume - quantity * temperature
}
use std::ops::{Mul, Sub};
fn calc_ideal_gas_generic<T>(pressure: T, volume: T, temperature: T, quantity: T) -> T
where
T: Mul<Output = T> + Sub<Output = T>,
{
pressure * volume - quantity * temperature
}
fn _calc_ideal_gas_deriv(volume: f64) -> f64 {
volume
}
fn newton_iterations<Resid>(
func: Resid,
initial: f64,
tolerance: f64,
max_iter: u8,
) -> Result<f64, ConvergenceError>
where
Resid: DualFunction,
{
let mut result = initial;
let mut calc = None;
for _ in 0..=max_iter {
calc = Some(result.derive(&func));
let error = (calc.unwrap().val - tolerance).abs();
if error <= tolerance {
return Ok(result);
}
let delta = -calc.unwrap().val / calc.unwrap().dual;
result += delta;
}
Err(ConvergenceError(calc.map_or(None, |x| Some(x.val))))
}