[−][src]Trait auto_diff::tensor::reduction::ReduceTensor
Associated Types
type TensorType
Required methods
fn argmax(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType
fn argmin(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType
fn dist()
fn logsumexp(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType
fn mean(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType
fn median()
fn mode()
fn norm()
fn prod(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType
fn std(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType
fn std_mean()
fn sum(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType
fn unique()
fn unique_consecutive()
fn var(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType
fn var_mean()
fn max(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType
fn min(&self, dim: Option<&[usize]>, keepdim: bool) -> Self::TensorType
Implementors
impl<T> ReduceTensor for GenTensor<T> where
T: Float,
[src]
T: Float,
type TensorType = GenTensor<T>
fn argmax(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType
[src]
fn argmin(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType
[src]
fn dist()
[src]
fn logsumexp(&self, dim: Option<&[usize]>, keep_dim: bool) -> Self::TensorType
[src]
fn mean(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T>
[src]
Returns the mean value of the tensor along dim row.
fn median()
[src]
fn mode()
[src]
fn norm()
[src]
fn prod(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T>
[src]
fn std(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T>
[src]
fn std_mean()
[src]
fn sum(&self, dim: Option<&[usize]>, keep_dim: bool) -> GenTensor<T>
[src]
Returns the sum of all elements.
let m1 = GenTensor::<f64>::new_raw(&vec![1.,2.,3.,4.,], &vec![2,2]); assert_eq!(m1.sum(None, false).get_scale(), 10.);