[][src]Struct auto_diff::op::loss::BCEWithLogitsLoss

pub struct BCEWithLogitsLoss {}

This loss combines a Sigmoid layer and the BCELoss in one single class. This version is more numerically stable than using a plain Sigmoid followed by a BCELoss as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.

-y log (1/(1 + exp(-x))) - (1-y) log(1 - 1/(1 + exp(-x)))

Prediction comes first, label comes second.

Methods

impl BCEWithLogitsLoss[src]

Trait Implementations

impl OpTrait for BCEWithLogitsLoss[src]

fn apply(&mut self, input: &[&Tensor], output: &[&Tensor])[src]

The first is the prediction, the second input is the label

fn grad(
    &self,
    input: &[&Tensor],
    output_grad: &[&Tensor],
    input_grad: &[&Tensor]
)
[src]

Given the forward input value and backward output_grad, Update weight gradient. return backward input gradeint.

fn get_values(&self) -> Vec<&Tensor>[src]

access weight values

fn get_grads(&self) -> Vec<&Tensor>[src]

access gradient values

Auto Trait Implementations

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,