pub struct MatrixOfPoly<T> { /* private fields */ }
Expand description
Polynomial matrix object
Contains the matrix of polynomials
P(x) = [[P1, P2], [P3, P4]]
Trait Implementations§
Source§impl<T: Debug> Debug for MatrixOfPoly<T>
impl<T: Debug> Debug for MatrixOfPoly<T>
Source§impl<T: Display + PartialOrd + Zero> Display for MatrixOfPoly<T>
Implementation of matrix of polynomials printing
impl<T: Display + PartialOrd + Zero> Display for MatrixOfPoly<T>
Implementation of matrix of polynomials printing
Auto Trait Implementations§
impl<T> Freeze for MatrixOfPoly<T>
impl<T> RefUnwindSafe for MatrixOfPoly<T>where
T: RefUnwindSafe,
impl<T> Send for MatrixOfPoly<T>where
T: Send,
impl<T> Sync for MatrixOfPoly<T>where
T: Sync,
impl<T> Unpin for MatrixOfPoly<T>
impl<T> UnwindSafe for MatrixOfPoly<T>where
T: RefUnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.