pub struct Pid<T: Float> { /* private fields */ }
Expand description
Proportional-Integral-Derivative controller
Implementations§
Source§impl<T: Float> Pid<T>
Implementation of Pid methods
impl<T: Float> Pid<T>
Implementation of Pid methods
Sourcepub fn tf(&self) -> Tf<T>
pub fn tf(&self) -> Tf<T>
Calculate the transfer function of the PID controller
§Real PID
1 Td
Kp (1 + ---- + ---------- s) =
Ti*s 1 + Td/N*s
N + (Ti*N +Td)s + Ti*Td(1 + N)s^2
= Kp ----------------------------------
Ti*N*s + Ti*Td*s^2
§Ideal PID
1 + Ti*s + Ti*Td*s^2
Kp --------------------
Ti*s
§Example
#[macro_use] extern crate au;
use au::{controller::pid::Pid, Tf};
let pid = Pid::new_ideal(2., 2., 0.5);
let tf = Tf::new(poly![1., 2., 1.], poly![0., 1.]);
assert_eq!(tf, pid.tf());
Trait Implementations§
Auto Trait Implementations§
impl<T> Freeze for Pid<T>where
T: Freeze,
impl<T> RefUnwindSafe for Pid<T>where
T: RefUnwindSafe,
impl<T> Send for Pid<T>where
T: Send,
impl<T> Sync for Pid<T>where
T: Sync,
impl<T> Unpin for Pid<T>where
T: Unpin,
impl<T> UnwindSafe for Pid<T>where
T: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.