pub struct Positioned<T: ?Sized> {
    pub pos: Pos,
    pub node: T,
}
Expand description

An AST node that stores its original position.

Fields§

§pos: Pos

The position of the node.

§node: T

The node itself.

Implementations§

Create a new positioned node from the node and its position.

Examples found in repository?
src/pos.rs (line 71)
70
71
72
73
74
75
76
77
78
    pub fn position_node<U>(&self, other: U) -> Positioned<U> {
        Positioned::new(other, self.pos)
    }

    /// Map the inner value of this positioned node.
    #[must_use]
    pub fn map<U>(self, f: impl FnOnce(T) -> U) -> Positioned<U> {
        Positioned::new(f(self.node), self.pos)
    }
More examples
Hide additional examples
src/types/mod.rs (line 168)
161
162
163
164
165
166
167
168
169
170
171
172
    pub fn into_const(self) -> Option<ConstDirective> {
        Some(ConstDirective {
            name: self.name,
            arguments: self
                .arguments
                .into_iter()
                .map(|(name, value)| {
                    Some((name, Positioned::new(value.node.into_const()?, value.pos)))
                })
                .collect::<Option<_>>()?,
        })
    }
src/parse/mod.rs (lines 41-49)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
fn parse_operation_type(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<OperationType>> {
    debug_assert_eq!(pair.as_rule(), Rule::operation_type);

    let pos = pc.step(&pair);

    Ok(Positioned::new(
        match pair.as_str() {
            "query" => OperationType::Query,
            "mutation" => OperationType::Mutation,
            "subscription" => OperationType::Subscription,
            _ => unreachable!(),
        },
        pos,
    ))
}

fn parse_default_value(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<ConstValue>> {
    debug_assert_eq!(pair.as_rule(), Rule::default_value);

    parse_const_value(exactly_one(pair.into_inner()), pc)
}

fn parse_type(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<Type>> {
    debug_assert_eq!(pair.as_rule(), Rule::type_);

    Ok(Positioned::new(
        Type::new(pair.as_str()).unwrap(),
        pc.step(&pair),
    ))
}

fn parse_const_value(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<ConstValue>> {
    debug_assert_eq!(pair.as_rule(), Rule::const_value);

    let pos = pc.step(&pair);
    let pair = exactly_one(pair.into_inner());

    Ok(Positioned::new(
        match pair.as_rule() {
            Rule::number => ConstValue::Number(parse_number(pair, pc)?.node),
            Rule::string => ConstValue::String(parse_string(pair, pc)?.node),
            Rule::boolean => ConstValue::Boolean(parse_boolean(pair, pc)?.node),
            Rule::null => ConstValue::Null,
            Rule::enum_value => ConstValue::Enum(parse_enum_value(pair, pc)?.node),
            Rule::const_list => ConstValue::List(
                pair.into_inner()
                    .map(|pair| Ok(parse_const_value(pair, pc)?.node))
                    .collect::<Result<_>>()?,
            ),
            Rule::const_object => ConstValue::Object(
                pair.into_inner()
                    .map(|pair| {
                        debug_assert_eq!(pair.as_rule(), Rule::const_object_field);

                        let mut pairs = pair.into_inner();

                        let name = parse_name(pairs.next().unwrap(), pc)?;
                        let value = parse_const_value(pairs.next().unwrap(), pc)?;

                        debug_assert_eq!(pairs.next(), None);

                        Ok((name.node, value.node))
                    })
                    .collect::<Result<_>>()?,
            ),
            _ => unreachable!(),
        },
        pos,
    ))
}
fn parse_value(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<Value>> {
    debug_assert_eq!(pair.as_rule(), Rule::value);

    let pos = pc.step(&pair);
    let pair = exactly_one(pair.into_inner());

    Ok(Positioned::new(
        match pair.as_rule() {
            Rule::variable => Value::Variable(parse_variable(pair, pc)?.node),
            Rule::number => Value::Number(parse_number(pair, pc)?.node),
            Rule::string => Value::String(parse_string(pair, pc)?.node),
            Rule::boolean => Value::Boolean(parse_boolean(pair, pc)?.node),
            Rule::null => Value::Null,
            Rule::enum_value => Value::Enum(parse_enum_value(pair, pc)?.node),
            Rule::list => Value::List(
                pair.into_inner()
                    .map(|pair| Ok(parse_value(pair, pc)?.node))
                    .collect::<Result<_>>()?,
            ),
            Rule::object => Value::Object(
                pair.into_inner()
                    .map(|pair| {
                        debug_assert_eq!(pair.as_rule(), Rule::object_field);
                        let mut pairs = pair.into_inner();

                        let name = parse_name(pairs.next().unwrap(), pc)?;
                        let value = parse_value(pairs.next().unwrap(), pc)?;

                        debug_assert_eq!(pairs.next(), None);

                        Ok((name.node, value.node))
                    })
                    .collect::<Result<_>>()?,
            ),
            _ => unreachable!(),
        },
        pos,
    ))
}

fn parse_variable(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<Name>> {
    debug_assert_eq!(pair.as_rule(), Rule::variable);
    parse_name(exactly_one(pair.into_inner()), pc)
}
fn parse_number(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<Number>> {
    debug_assert_eq!(pair.as_rule(), Rule::number);
    let pos = pc.step(&pair);
    Ok(Positioned::new(
        pair.as_str().parse().map_err(|err| Error::Syntax {
            message: format!("invalid number: {}", err),
            start: pos,
            end: None,
        })?,
        pos,
    ))
}
fn parse_string(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<String>> {
    debug_assert_eq!(pair.as_rule(), Rule::string);
    let pos = pc.step(&pair);
    let pair = exactly_one(pair.into_inner());
    Ok(Positioned::new(
        match pair.as_rule() {
            Rule::block_string_content => block_string_value(pair.as_str()),
            Rule::string_content => string_value(pair.as_str()),
            _ => unreachable!(),
        },
        pos,
    ))
}
fn parse_boolean(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<bool>> {
    debug_assert_eq!(pair.as_rule(), Rule::boolean);
    let pos = pc.step(&pair);
    Ok(Positioned::new(
        match pair.as_str() {
            "true" => true,
            "false" => false,
            _ => unreachable!(),
        },
        pos,
    ))
}
fn parse_enum_value(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<Name>> {
    debug_assert_eq!(pair.as_rule(), Rule::enum_value);
    parse_name(exactly_one(pair.into_inner()), pc)
}

fn parse_opt_const_directives<'a>(
    pairs: &mut Pairs<'a, Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<Positioned<ConstDirective>>> {
    Ok(parse_if_rule(pairs, Rule::const_directives, |pair| {
        parse_const_directives(pair, pc)
    })?
    .unwrap_or_default())
}
fn parse_opt_directives<'a>(
    pairs: &mut Pairs<'a, Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<Positioned<Directive>>> {
    Ok(
        parse_if_rule(pairs, Rule::directives, |pair| parse_directives(pair, pc))?
            .unwrap_or_default(),
    )
}
fn parse_const_directives(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<Positioned<ConstDirective>>> {
    debug_assert_eq!(pair.as_rule(), Rule::const_directives);

    pair.into_inner()
        .map(|pair| parse_const_directive(pair, pc))
        .collect()
}
fn parse_directives(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<Positioned<Directive>>> {
    debug_assert_eq!(pair.as_rule(), Rule::directives);

    pair.into_inner()
        .map(|pair| parse_directive(pair, pc))
        .collect()
}

fn parse_const_directive(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<ConstDirective>> {
    debug_assert_eq!(pair.as_rule(), Rule::const_directive);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let name = parse_name(pairs.next().unwrap(), pc)?;
    let arguments = parse_if_rule(&mut pairs, Rule::const_arguments, |pair| {
        parse_const_arguments(pair, pc)
    })?;

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        ConstDirective {
            name,
            arguments: arguments.unwrap_or_default(),
        },
        pos,
    ))
}
fn parse_directive(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<Directive>> {
    debug_assert_eq!(pair.as_rule(), Rule::directive);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let name = parse_name(pairs.next().unwrap(), pc)?;
    let arguments = parse_if_rule(&mut pairs, Rule::arguments, |pair| {
        parse_arguments(pair, pc)
    })?;

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        Directive {
            name,
            arguments: arguments.unwrap_or_default(),
        },
        pos,
    ))
}

fn parse_const_arguments(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<(Positioned<Name>, Positioned<ConstValue>)>> {
    debug_assert_eq!(pair.as_rule(), Rule::const_arguments);
    pair.into_inner()
        .map(|pair| {
            debug_assert_eq!(pair.as_rule(), Rule::const_argument);
            let mut pairs = pair.into_inner();

            let name = parse_name(pairs.next().unwrap(), pc)?;
            let value = parse_const_value(pairs.next().unwrap(), pc)?;

            debug_assert_eq!(pairs.next(), None);

            Ok((name, value))
        })
        .collect()
}
fn parse_arguments(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<(Positioned<Name>, Positioned<Value>)>> {
    debug_assert_eq!(pair.as_rule(), Rule::arguments);
    pair.into_inner()
        .map(|pair| {
            debug_assert_eq!(pair.as_rule(), Rule::argument);
            let mut pairs = pair.into_inner();

            let name = parse_name(pairs.next().unwrap(), pc)?;
            let value = parse_value(pairs.next().unwrap(), pc)?;

            debug_assert_eq!(pairs.next(), None);

            Ok((name, value))
        })
        .collect()
}

fn parse_name(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<Name>> {
    debug_assert_eq!(pair.as_rule(), Rule::name);
    Ok(Positioned::new(Name::new(pair.as_str()), pc.step(&pair)))
}
src/parse/service.rs (lines 95-104)
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
fn parse_schema_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<SchemaDefinition>> {
    debug_assert_eq!(pair.as_rule(), Rule::schema_definition);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let extend = next_if_rule(&mut pairs, Rule::extend).is_some();
    let directives = parse_opt_const_directives(&mut pairs, pc)?;

    let mut query = None;
    let mut mutation = None;
    let mut subscription = None;

    for pair in pairs {
        debug_assert_eq!(pair.as_rule(), Rule::operation_type_definition);

        let mut pairs = pair.into_inner();

        let operation_type = parse_operation_type(pairs.next().unwrap(), pc)?;
        let name = parse_name(pairs.next().unwrap(), pc)?;

        match operation_type.node {
            OperationType::Query if query.is_none() => query = Some(name),
            OperationType::Mutation if mutation.is_none() => mutation = Some(name),
            OperationType::Subscription if subscription.is_none() => subscription = Some(name),
            _ => {
                return Err(Error::MultipleRoots {
                    root: operation_type.node,
                    schema: pos,
                    pos: operation_type.pos,
                })
            }
        }

        debug_assert_eq!(pairs.next(), None);
    }

    if !extend && query.is_none() {
        return Err(Error::MissingQueryRoot { pos });
    }

    Ok(Positioned::new(
        SchemaDefinition {
            extend,
            directives,
            query,
            mutation,
            subscription,
        },
        pos,
    ))
}

fn parse_type_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<TypeDefinition>> {
    debug_assert_eq!(pair.as_rule(), Rule::type_definition);

    let pos = pc.step(&pair);
    let pair = exactly_one(pair.into_inner());
    let rule = pair.as_rule();
    let mut pairs = pair.into_inner();

    let description = parse_if_rule(&mut pairs, Rule::string, |pair| parse_string(pair, pc))?;
    let extend = next_if_rule(&mut pairs, Rule::extend).is_some();
    let name = parse_name(pairs.next().unwrap(), pc)?;

    let (directives, kind) = match rule {
        Rule::scalar_type => {
            let directives = parse_opt_const_directives(&mut pairs, pc)?;
            (directives, TypeKind::Scalar)
        }
        Rule::object_type => {
            let implements = parse_if_rule(&mut pairs, Rule::implements_interfaces, |pair| {
                debug_assert_eq!(pair.as_rule(), Rule::implements_interfaces);

                pair.into_inner()
                    .map(|pair| parse_name(pair, pc))
                    .collect::<Result<_>>()
            })?;

            let directives = parse_opt_const_directives(&mut pairs, pc)?;

            let fields = parse_if_rule(&mut pairs, Rule::fields_definition, |pair| {
                parse_fields_definition(pair, pc)
            })?
            .unwrap_or_default();

            (
                directives,
                TypeKind::Object(ObjectType {
                    implements: implements.unwrap_or_default(),
                    fields,
                }),
            )
        }
        Rule::interface_type => {
            let implements = parse_if_rule(&mut pairs, Rule::implements_interfaces, |pair| {
                debug_assert_eq!(pair.as_rule(), Rule::implements_interfaces);

                pair.into_inner()
                    .map(|pair| parse_name(pair, pc))
                    .collect::<Result<_>>()
            })?;

            let directives = parse_opt_const_directives(&mut pairs, pc)?;
            let fields = parse_if_rule(&mut pairs, Rule::fields_definition, |pair| {
                parse_fields_definition(pair, pc)
            })?
            .unwrap_or_default();
            (
                directives,
                TypeKind::Interface(InterfaceType {
                    implements: implements.unwrap_or_default(),
                    fields,
                }),
            )
        }
        Rule::union_type => {
            let directives = parse_opt_const_directives(&mut pairs, pc)?;
            let members = parse_if_rule(&mut pairs, Rule::union_member_types, |pair| {
                debug_assert_eq!(pair.as_rule(), Rule::union_member_types);

                pair.into_inner().map(|pair| parse_name(pair, pc)).collect()
            })?
            .unwrap_or_default();
            (directives, TypeKind::Union(UnionType { members }))
        }
        Rule::enum_type => {
            let directives = parse_opt_const_directives(&mut pairs, pc)?;
            let values = parse_if_rule(&mut pairs, Rule::enum_values, |pair| {
                debug_assert_eq!(pair.as_rule(), Rule::enum_values);

                pair.into_inner()
                    .map(|pair| {
                        debug_assert_eq!(pair.as_rule(), Rule::enum_value_definition);

                        let pos = pc.step(&pair);
                        let mut pairs = pair.into_inner();

                        let description =
                            parse_if_rule(&mut pairs, Rule::string, |pair| parse_string(pair, pc))?;
                        let value = parse_enum_value(pairs.next().unwrap(), pc)?;
                        let directives = parse_opt_const_directives(&mut pairs, pc)?;

                        debug_assert_eq!(pairs.next(), None);

                        Ok(Positioned::new(
                            EnumValueDefinition {
                                description,
                                value,
                                directives,
                            },
                            pos,
                        ))
                    })
                    .collect()
            })?
            .unwrap_or_default();
            (directives, TypeKind::Enum(EnumType { values }))
        }
        Rule::input_object_type => {
            let directives = parse_opt_const_directives(&mut pairs, pc)?;
            let fields = parse_if_rule(&mut pairs, Rule::input_fields_definition, |pair| {
                debug_assert_eq!(pair.as_rule(), Rule::input_fields_definition);

                pair.into_inner()
                    .map(|pair| parse_input_value_definition(pair, pc))
                    .collect()
            })?
            .unwrap_or_default();

            (
                directives,
                TypeKind::InputObject(InputObjectType { fields }),
            )
        }
        _ => unreachable!(),
    };

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        TypeDefinition {
            extend,
            description,
            name,
            directives,
            kind,
        },
        pos,
    ))
}

fn parse_fields_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<Positioned<FieldDefinition>>> {
    debug_assert_eq!(pair.as_rule(), Rule::fields_definition);

    pair.into_inner()
        .map(|pair| parse_field_definition(pair, pc))
        .collect()
}

fn parse_field_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<FieldDefinition>> {
    debug_assert_eq!(pair.as_rule(), Rule::field_definition);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let description = parse_if_rule(&mut pairs, Rule::string, |pair| parse_string(pair, pc))?;
    let name = parse_name(pairs.next().unwrap(), pc)?;
    let arguments = parse_if_rule(&mut pairs, Rule::arguments_definition, |pair| {
        parse_arguments_definition(pair, pc)
    })?
    .unwrap_or_default();
    let ty = parse_type(pairs.next().unwrap(), pc)?;
    let directives = parse_opt_const_directives(&mut pairs, pc)?;

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        FieldDefinition {
            description,
            name,
            arguments,
            ty,
            directives,
        },
        pos,
    ))
}

fn parse_directive_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<DirectiveDefinition>> {
    debug_assert_eq!(pair.as_rule(), Rule::directive_definition);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let description = parse_if_rule(&mut pairs, Rule::string, |pair| parse_string(pair, pc))?;
    let name = parse_name(pairs.next().unwrap(), pc)?;
    let arguments = parse_if_rule(&mut pairs, Rule::arguments_definition, |pair| {
        debug_assert_eq!(pair.as_rule(), Rule::arguments_definition);
        pair.into_inner()
            .map(|pair| parse_input_value_definition(pair, pc))
            .collect()
    })?
    .unwrap_or_default();
    let locations = {
        let pair = pairs.next().unwrap();
        debug_assert_eq!(pair.as_rule(), Rule::directive_locations);
        pair.into_inner()
            .map(|pair| {
                let pos = pc.step(&pair);
                debug_assert_eq!(pair.as_rule(), Rule::directive_location);
                Positioned::new(
                    match pair.as_str() {
                        "QUERY" => DirectiveLocation::Query,
                        "MUTATION" => DirectiveLocation::Mutation,
                        "SUBSCRIPTION" => DirectiveLocation::Subscription,
                        "FIELD" => DirectiveLocation::Field,
                        "FRAGMENT_DEFINITION" => DirectiveLocation::FragmentDefinition,
                        "FRAGMENT_SPREAD" => DirectiveLocation::FragmentSpread,
                        "INLINE_FRAGMENT" => DirectiveLocation::InlineFragment,
                        "VARIABLE_DEFINITION" => DirectiveLocation::VariableDefinition,
                        "SCHEMA" => DirectiveLocation::Schema,
                        "SCALAR" => DirectiveLocation::Scalar,
                        "OBJECT" => DirectiveLocation::Object,
                        "FIELD_DEFINITION" => DirectiveLocation::FieldDefinition,
                        "ARGUMENT_DEFINITION" => DirectiveLocation::ArgumentDefinition,
                        "INTERFACE" => DirectiveLocation::Interface,
                        "UNION" => DirectiveLocation::Union,
                        "ENUM" => DirectiveLocation::Enum,
                        "ENUM_VALUE" => DirectiveLocation::EnumValue,
                        "INPUT_OBJECT" => DirectiveLocation::InputObject,
                        "INPUT_FIELD_DEFINITION" => DirectiveLocation::InputFieldDefinition,
                        _ => unreachable!(),
                    },
                    pos,
                )
            })
            .collect()
    };

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        DirectiveDefinition {
            description,
            name,
            arguments,
            locations,
        },
        pos,
    ))
}

fn parse_arguments_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<Positioned<InputValueDefinition>>> {
    debug_assert_eq!(pair.as_rule(), Rule::arguments_definition);

    pair.into_inner()
        .map(|pair| parse_input_value_definition(pair, pc))
        .collect()
}

fn parse_input_value_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<InputValueDefinition>> {
    debug_assert_eq!(pair.as_rule(), Rule::input_value_definition);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let description = parse_if_rule(&mut pairs, Rule::string, |pair| parse_string(pair, pc))?;
    let name = parse_name(pairs.next().unwrap(), pc)?;
    let ty = parse_type(pairs.next().unwrap(), pc)?;
    let default_value = parse_if_rule(&mut pairs, Rule::default_value, |pair| {
        parse_default_value(pair, pc)
    })?;
    let directives = parse_opt_const_directives(&mut pairs, pc)?;

    Ok(Positioned::new(
        InputValueDefinition {
            description,
            name,
            ty,
            default_value,
            directives,
        },
        pos,
    ))
}
src/parse/executable.rs (line 56)
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
pub fn parse_query<T: AsRef<str>>(input: T) -> Result<ExecutableDocument> {
    let mut pc = PositionCalculator::new(input.as_ref());

    let pairs = GraphQLParser::parse(Rule::executable_document, input.as_ref())?;
    let items = parse_definition_items(exactly_one(pairs), &mut pc)?;

    let mut operations = None;
    let mut fragments: HashMap<_, Positioned<FragmentDefinition>> = HashMap::new();

    for item in items {
        match item {
            DefinitionItem::Operation(item) => {
                if let Some(name) = item.node.name {
                    let operations = operations
                        .get_or_insert_with(|| DocumentOperations::Multiple(HashMap::new()));
                    let operations = match operations {
                        DocumentOperations::Single(anonymous) => {
                            return Err(Error::MultipleOperations {
                                anonymous: anonymous.pos,
                                operation: item.pos,
                            })
                        }
                        DocumentOperations::Multiple(operations) => operations,
                    };

                    match operations.entry(name.node) {
                        hash_map::Entry::Occupied(entry) => {
                            let (name, first) = entry.remove_entry();
                            return Err(Error::OperationDuplicated {
                                operation: name,
                                first: first.pos,
                                second: item.pos,
                            });
                        }
                        hash_map::Entry::Vacant(entry) => {
                            entry.insert(Positioned::new(item.node.definition, item.pos));
                        }
                    }
                } else {
                    match operations {
                        Some(operations) => {
                            return Err(Error::MultipleOperations {
                                anonymous: item.pos,
                                operation: match operations {
                                    DocumentOperations::Single(single) => single.pos,
                                    DocumentOperations::Multiple(map) => {
                                        map.values().next().unwrap().pos
                                    }
                                },
                            });
                        }
                        None => {
                            operations = Some(DocumentOperations::Single(Positioned::new(
                                item.node.definition,
                                item.pos,
                            )));
                        }
                    }
                }
            }
            DefinitionItem::Fragment(item) => match fragments.entry(item.node.name.node) {
                hash_map::Entry::Occupied(entry) => {
                    let (name, first) = entry.remove_entry();
                    return Err(Error::FragmentDuplicated {
                        fragment: name,
                        first: first.pos,
                        second: item.pos,
                    });
                }
                hash_map::Entry::Vacant(entry) => {
                    entry.insert(Positioned::new(item.node.definition, item.pos));
                }
            },
        }
    }

    Ok(ExecutableDocument {
        operations: operations.ok_or(Error::MissingOperation)?,
        fragments,
    })
}

fn parse_definition_items(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<DefinitionItem>> {
    debug_assert_eq!(pair.as_rule(), Rule::executable_document);

    Ok(pair
        .into_inner()
        .filter(|pair| pair.as_rule() != Rule::EOI)
        .map(|pair| parse_definition_item(pair, pc))
        .collect::<Result<_>>()?)
}

enum DefinitionItem {
    Operation(Positioned<OperationDefinitionItem>),
    Fragment(Positioned<FragmentDefinitionItem>),
}

fn parse_definition_item(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<DefinitionItem> {
    debug_assert_eq!(pair.as_rule(), Rule::executable_definition);

    let pair = exactly_one(pair.into_inner());
    Ok(match pair.as_rule() {
        Rule::operation_definition => {
            DefinitionItem::Operation(parse_operation_definition_item(pair, pc)?)
        }
        Rule::fragment_definition => {
            DefinitionItem::Fragment(parse_fragment_definition_item(pair, pc)?)
        }
        _ => unreachable!(),
    })
}

struct OperationDefinitionItem {
    name: Option<Positioned<Name>>,
    definition: OperationDefinition,
}

fn parse_operation_definition_item(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<OperationDefinitionItem>> {
    debug_assert_eq!(pair.as_rule(), Rule::operation_definition);

    let pos = pc.step(&pair);
    let pair = exactly_one(pair.into_inner());
    Ok(Positioned::new(
        match pair.as_rule() {
            Rule::named_operation_definition => parse_named_operation_definition(pair, pc)?,
            Rule::selection_set => OperationDefinitionItem {
                name: None,
                definition: OperationDefinition {
                    ty: OperationType::Query,
                    variable_definitions: Vec::new(),
                    directives: Vec::new(),
                    selection_set: parse_selection_set(pair, pc, MAX_RECURSION_DEPTH)?,
                },
            },
            _ => unreachable!(),
        },
        pos,
    ))
}

fn parse_named_operation_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<OperationDefinitionItem> {
    debug_assert_eq!(pair.as_rule(), Rule::named_operation_definition);

    let mut pairs = pair.into_inner();

    let ty = parse_operation_type(pairs.next().unwrap(), pc)?;
    let name = parse_if_rule(&mut pairs, Rule::name, |pair| parse_name(pair, pc))?;
    let variable_definitions = parse_if_rule(&mut pairs, Rule::variable_definitions, |pair| {
        parse_variable_definitions(pair, pc)
    })?;
    let directives = parse_opt_directives(&mut pairs, pc)?;
    let selection_set = parse_selection_set(pairs.next().unwrap(), pc, MAX_RECURSION_DEPTH)?;

    debug_assert_eq!(pairs.next(), None);

    Ok(OperationDefinitionItem {
        name,
        definition: OperationDefinition {
            ty: ty.node,
            variable_definitions: variable_definitions.unwrap_or_default(),
            directives,
            selection_set,
        },
    })
}

fn parse_variable_definitions(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Vec<Positioned<VariableDefinition>>> {
    debug_assert_eq!(pair.as_rule(), Rule::variable_definitions);

    pair.into_inner()
        .map(|pair| parse_variable_definition(pair, pc))
        .collect()
}

fn parse_variable_definition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<VariableDefinition>> {
    debug_assert_eq!(pair.as_rule(), Rule::variable_definition);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let variable = parse_variable(pairs.next().unwrap(), pc)?;
    let var_type = parse_type(pairs.next().unwrap(), pc)?;

    let directives = parse_opt_directives(&mut pairs, pc)?;
    let default_value = parse_if_rule(&mut pairs, Rule::default_value, |pair| {
        parse_default_value(pair, pc)
    })?;

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        VariableDefinition {
            name: variable,
            var_type,
            directives,
            default_value,
        },
        pos,
    ))
}

fn parse_selection_set(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
    remaining_depth: usize,
) -> Result<Positioned<SelectionSet>> {
    debug_assert_eq!(pair.as_rule(), Rule::selection_set);

    let pos = pc.step(&pair);

    Ok(Positioned::new(
        SelectionSet {
            items: pair
                .into_inner()
                .map(|pair| parse_selection(pair, pc, remaining_depth))
                .collect::<Result<_>>()?,
        },
        pos,
    ))
}

fn parse_selection(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
    remaining_depth: usize,
) -> Result<Positioned<Selection>> {
    debug_assert_eq!(pair.as_rule(), Rule::selection);

    let pos = pc.step(&pair);
    let pair = exactly_one(pair.into_inner());

    Ok(Positioned::new(
        match pair.as_rule() {
            Rule::field => Selection::Field(parse_field(pair, pc, remaining_depth)?),
            Rule::fragment_spread => Selection::FragmentSpread(parse_fragment_spread(pair, pc)?),
            Rule::inline_fragment => {
                Selection::InlineFragment(parse_inline_fragment(pair, pc, remaining_depth)?)
            }
            _ => unreachable!(),
        },
        pos,
    ))
}

fn parse_field(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
    remaining_depth: usize,
) -> Result<Positioned<Field>> {
    debug_assert_eq!(pair.as_rule(), Rule::field);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let alias = parse_if_rule(&mut pairs, Rule::alias, |pair| parse_alias(pair, pc))?;
    let name = parse_name(pairs.next().unwrap(), pc)?;
    let arguments = parse_if_rule(&mut pairs, Rule::arguments, |pair| {
        parse_arguments(pair, pc)
    })?;
    let directives = parse_opt_directives(&mut pairs, pc)?;
    let selection_set = parse_if_rule(&mut pairs, Rule::selection_set, |pair| {
        parse_selection_set(pair, pc, recursion_depth!(remaining_depth))
    })?;

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        Field {
            alias,
            name,
            arguments: arguments.unwrap_or_default(),
            directives,
            selection_set: selection_set.unwrap_or_default(),
        },
        pos,
    ))
}

fn parse_alias(pair: Pair<Rule>, pc: &mut PositionCalculator) -> Result<Positioned<Name>> {
    debug_assert_eq!(pair.as_rule(), Rule::alias);
    parse_name(exactly_one(pair.into_inner()), pc)
}

fn parse_fragment_spread(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<FragmentSpread>> {
    debug_assert_eq!(pair.as_rule(), Rule::fragment_spread);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let fragment_name = parse_name(pairs.next().unwrap(), pc)?;
    let directives = parse_opt_directives(&mut pairs, pc)?;

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        FragmentSpread {
            fragment_name,
            directives,
        },
        pos,
    ))
}

fn parse_inline_fragment(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
    remaining_depth: usize,
) -> Result<Positioned<InlineFragment>> {
    debug_assert_eq!(pair.as_rule(), Rule::inline_fragment);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let type_condition = parse_if_rule(&mut pairs, Rule::type_condition, |pair| {
        parse_type_condition(pair, pc)
    })?;
    let directives = parse_opt_directives(&mut pairs, pc)?;
    let selection_set =
        parse_selection_set(pairs.next().unwrap(), pc, recursion_depth!(remaining_depth))?;

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        InlineFragment {
            type_condition,
            directives,
            selection_set,
        },
        pos,
    ))
}

struct FragmentDefinitionItem {
    name: Positioned<Name>,
    definition: FragmentDefinition,
}

fn parse_fragment_definition_item(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<FragmentDefinitionItem>> {
    debug_assert_eq!(pair.as_rule(), Rule::fragment_definition);

    let pos = pc.step(&pair);
    let mut pairs = pair.into_inner();

    let name = parse_name(pairs.next().unwrap(), pc)?;
    let type_condition = parse_type_condition(pairs.next().unwrap(), pc)?;
    let directives = parse_opt_directives(&mut pairs, pc)?;
    let selection_set = parse_selection_set(pairs.next().unwrap(), pc, MAX_RECURSION_DEPTH)?;

    debug_assert_eq!(pairs.next(), None);

    Ok(Positioned::new(
        FragmentDefinitionItem {
            name,
            definition: FragmentDefinition {
                type_condition,
                directives,
                selection_set,
            },
        },
        pos,
    ))
}

fn parse_type_condition(
    pair: Pair<Rule>,
    pc: &mut PositionCalculator,
) -> Result<Positioned<TypeCondition>> {
    debug_assert_eq!(pair.as_rule(), Rule::type_condition);

    let pos = pc.step(&pair);
    Ok(Positioned::new(
        TypeCondition {
            on: parse_name(exactly_one(pair.into_inner()), pc)?,
        },
        pos,
    ))
}

Get the inner node.

This is most useful in callback chains where Positioned::into_inner is easier to read than |positioned| positioned.node.

Create a new positioned node with the same position as this one.

Map the inner value of this positioned node.

Examples found in repository?
src/types/mod.rs (line 132)
126
127
128
129
130
131
132
133
134
135
    pub fn into_directive(self) -> Directive {
        Directive {
            name: self.name,
            arguments: self
                .arguments
                .into_iter()
                .map(|(name, value)| (name, value.map(ConstValue::into_value)))
                .collect(),
        }
    }

Trait Implementations§

Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
Returns the “default value” for a type. Read more
Deserialize this value from the given Serde deserializer. Read more
Formats the value using the given formatter. Read more
Feeds this value into the given Hasher. Read more
Feeds a slice of this type into the given Hasher. Read more
This method returns an Ordering between self and other. Read more
Compares and returns the maximum of two values. Read more
Compares and returns the minimum of two values. Read more
Restrict a value to a certain interval. Read more
This method tests for self and other values to be equal, and is used by ==. Read more
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason. Read more
This method returns an ordering between self and other values if one exists. Read more
This method tests less than (for self and other) and is used by the < operator. Read more
This method tests less than or equal to (for self and other) and is used by the <= operator. Read more
This method tests greater than (for self and other) and is used by the > operator. Read more
This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more
Compare self to key and return true if they are equal.

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
Converts the given value to a String. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.