pub struct Reader<'t, D: Distance> { /* private fields */ }Expand description
A reader over the arroy trees and user items.
Implementations§
source§impl<'t, D: Distance> Reader<'t, D>
impl<'t, D: Distance> Reader<'t, D>
sourcepub fn open(
rtxn: &'t RoTxn<'_>,
index: u16,
database: Database<D>,
) -> Result<Reader<'t, D>>
pub fn open( rtxn: &'t RoTxn<'_>, index: u16, database: Database<D>, ) -> Result<Reader<'t, D>>
Returns a reader over the database with the specified Distance type.
sourcepub fn dimensions(&self) -> usize
pub fn dimensions(&self) -> usize
Returns the number of dimensions in the index.
sourcepub fn item_ids(&self) -> &RoaringBitmap
pub fn item_ids(&self) -> &RoaringBitmap
Returns all the item ids contained in this index.
sourcepub fn stats(&self, rtxn: &RoTxn<'_>) -> Result<Stats>
pub fn stats(&self, rtxn: &RoTxn<'_>) -> Result<Stats>
Returns the stats of the trees of this database.
sourcepub fn n_nodes(&self, rtxn: &'t RoTxn<'_>) -> Result<Option<NonZeroUsize>>
pub fn n_nodes(&self, rtxn: &'t RoTxn<'_>) -> Result<Option<NonZeroUsize>>
Returns the number of nodes in the index. Useful to run an exhaustive search.
sourcepub fn item_vector(
&self,
rtxn: &'t RoTxn<'_>,
item: ItemId,
) -> Result<Option<Vec<f32>>>
pub fn item_vector( &self, rtxn: &'t RoTxn<'_>, item: ItemId, ) -> Result<Option<Vec<f32>>>
Returns the vector for item i that was previously added.
sourcepub fn contains_item(&self, rtxn: &RoTxn<'_>, item: ItemId) -> Result<bool>
pub fn contains_item(&self, rtxn: &RoTxn<'_>, item: ItemId) -> Result<bool>
Returns true if the database contains the given item.
sourcepub fn iter(&self, rtxn: &'t RoTxn<'_>) -> Result<ItemIter<'t, D>>
pub fn iter(&self, rtxn: &'t RoTxn<'_>) -> Result<ItemIter<'t, D>>
Returns an iterator over the items vector.
sourcepub fn nns_by_item(
&self,
rtxn: &'t RoTxn<'_>,
item: ItemId,
count: usize,
search_k: Option<NonZeroUsize>,
candidates: Option<&RoaringBitmap>,
) -> Result<Option<Vec<(ItemId, f32)>>>
pub fn nns_by_item( &self, rtxn: &'t RoTxn<'_>, item: ItemId, count: usize, search_k: Option<NonZeroUsize>, candidates: Option<&RoaringBitmap>, ) -> Result<Option<Vec<(ItemId, f32)>>>
Returns the count closests items from item.
During the query it will inspect up to search_k nodes which defaults
to n_trees * count if not provided. search_k gives you a run-time
tradeoff between better accuracy and speed.
The candidates parameter corresponds to the subset of item ids arroy will return.
sourcepub fn nns_by_vector(
&self,
rtxn: &'t RoTxn<'_>,
vector: &[f32],
count: usize,
search_k: Option<NonZeroUsize>,
candidates: Option<&RoaringBitmap>,
) -> Result<Vec<(ItemId, f32)>>
pub fn nns_by_vector( &self, rtxn: &'t RoTxn<'_>, vector: &[f32], count: usize, search_k: Option<NonZeroUsize>, candidates: Option<&RoaringBitmap>, ) -> Result<Vec<(ItemId, f32)>>
Returns the count closest items from the provided vector.
See Reader::nns_by_item for more details.