Trait array_math::ArrayOps 
source · pub trait ArrayOps<T, const N: usize>: Array<Item = T> + IntoIterator + Borrow<[T; N]> + BorrowMut<[T; N]> {
Show 148 methods
    // Required methods
    fn split_len(n: usize) -> (usize, usize);
    fn rsplit_len(n: usize) -> (usize, usize);
    fn split_ptr(&self, n: usize) -> (*const T, *const T);
    fn split_mut_ptr(&mut self, n: usize) -> (*mut T, *mut T);
    fn rsplit_ptr(&self, n: usize) -> (*const T, *const T);
    fn rsplit_mut_ptr(&mut self, n: usize) -> (*mut T, *mut T);
    fn fill<F>(fill: F) -> Self
       where F: FnMut(usize) -> T;
    fn rfill<F>(fill: F) -> Self
       where F: FnMut(usize) -> T;
    fn fill_boxed<F>(fill: F) -> Box<Self>
       where F: FnMut(usize) -> T;
    fn rfill_boxed<F>(fill: F) -> Box<Self>
       where F: FnMut(usize) -> T;
    fn fill_boxed_in<F, A>(fill: F, alloc: A) -> Box<Self, A>
       where F: FnMut(usize) -> T,
             A: Allocator;
    fn rfill_boxed_in<F, A>(fill: F, alloc: A) -> Box<Self, A>
       where F: FnMut(usize) -> T,
             A: Allocator;
    fn truncate<const M: usize>(self) -> [T; M];
    fn rtruncate<const M: usize>(self) -> [T; M];
    fn truncate_ref<const M: usize>(&self) -> &[T; M];
    fn rtruncate_ref<const M: usize>(&self) -> &[T; M];
    fn truncate_mut<const M: usize>(&mut self) -> &mut [T; M];
    fn rtruncate_mut<const M: usize>(&mut self) -> &mut [T; M];
    fn resize<const M: usize, F>(self, fill: F) -> [T; M]
       where F: FnMut(usize) -> T;
    fn rresize<const M: usize, F>(self, fill: F) -> [T; M]
       where F: FnMut(usize) -> T;
    fn extend<const M: usize, F>(self, fill: F) -> [T; M]
       where F: FnMut(usize) -> T;
    fn rextend<const M: usize, F>(self, fill: F) -> [T; M]
       where F: FnMut(usize) -> T;
    fn reformulate_length<const M: usize>(self) -> [T; M];
    fn reformulate_length_ref<const M: usize>(&self) -> &[T; M];
    fn reformulate_length_mut<const M: usize>(&mut self) -> &mut [T; M];
    fn try_reformulate_length<const M: usize>(self) -> Result<[T; M], Self>;
    fn try_reformulate_length_ref<const M: usize>(&self) -> Option<&[T; M]>;
    fn try_reformulate_length_mut<const M: usize>(
        &mut self
    ) -> Option<&mut [T; M]>;
    fn into_collumn(self) -> [[T; 1]; N];
    fn as_collumn(&self) -> &[[T; 1]; N];
    fn as_collumn_mut(&mut self) -> &mut [[T; 1]; N];
    fn map2<Map>(self, map: Map) -> [<Map as FnOnce(T)>::Output; N]
       where Map: FnMut(T);
    fn map_outer<Map>(
        &self,
        map: Map
    ) -> [[<Map as FnOnce(T, T)>::Output; N]; N]
       where Map: FnMut(T, T),
             T: Copy;
    fn comap<Map, Rhs>(
        self,
        rhs: [Rhs; N],
        map: Map
    ) -> [<Map as FnOnce(T, Rhs)>::Output; N]
       where Map: FnMut(T, Rhs);
    fn comap_outer<Map, Rhs, const M: usize>(
        &self,
        rhs: &[Rhs; M],
        map: Map
    ) -> [[<Map as FnOnce(T, Rhs)>::Output; M]; N]
       where Map: FnMut(T, Rhs),
             T: Copy,
             Rhs: Copy;
    fn flat_map<Map, O, const M: usize>(self, map: Map) -> [O; { _ }]
       where Map: FnMut(T) -> [O; M];
    fn map_assign<Map>(&mut self, map: Map)
       where Map: FnMut(T) -> T;
    fn zip<Z>(self, other: [Z; N]) -> [(T, Z); N];
    fn zip_outer<Z, const M: usize>(&self, other: &[Z; M]) -> [[(T, Z); M]; N]
       where T: Copy,
             Z: Copy;
    fn enumerate(self) -> [(usize, T); N];
    fn diagonal<const H: usize, const W: usize>(self) -> [[T; W]; H]
       where T: Default + Copy;
    fn differentiate(&mut self)
       where T: SubAssign + Copy;
    fn integrate(&mut self)
       where T: AddAssign + Copy;
    fn reduce<R>(self, reduce: R) -> Option<T>
       where R: FnMut(T, T) -> T;
    fn try_sum(self) -> Option<T>
       where T: AddAssign;
    fn sum_from<S>(self, from: S) -> S
       where S: AddAssign<T>;
    fn try_product(self) -> Option<T>
       where T: MulAssign;
    fn product_from<P>(self, from: P) -> P
       where P: MulAssign<T>;
    fn max(self) -> Option<T>
       where T: Ord;
    fn min(self) -> Option<T>
       where T: Ord;
    fn first_max(self) -> Option<T>
       where T: PartialOrd;
    fn first_min(self) -> Option<T>
       where T: PartialOrd;
    fn argmax(&self) -> Option<usize>
       where T: PartialOrd;
    fn argmin(&self) -> Option<usize>
       where T: PartialOrd;
    fn add_all<Rhs>(self, rhs: Rhs) -> [<T as Add<Rhs>>::Output; N]
       where T: Add<Rhs>,
             Rhs: Copy;
    fn sub_all<Rhs>(self, rhs: Rhs) -> [<T as Sub<Rhs>>::Output; N]
       where T: Sub<Rhs>,
             Rhs: Copy;
    fn mul_all<Rhs>(self, rhs: Rhs) -> [<T as Mul<Rhs>>::Output; N]
       where T: Mul<Rhs>,
             Rhs: Copy;
    fn div_all<Rhs>(self, rhs: Rhs) -> [<T as Div<Rhs>>::Output; N]
       where T: Div<Rhs>,
             Rhs: Copy;
    fn rem_all<Rhs>(self, rhs: Rhs) -> [<T as Rem<Rhs>>::Output; N]
       where T: Rem<Rhs>,
             Rhs: Copy;
    fn shl_all<Rhs>(self, rhs: Rhs) -> [<T as Shl<Rhs>>::Output; N]
       where T: Shl<Rhs>,
             Rhs: Copy;
    fn shr_all<Rhs>(self, rhs: Rhs) -> [<T as Shr<Rhs>>::Output; N]
       where T: Shr<Rhs>,
             Rhs: Copy;
    fn bitor_all<Rhs>(self, rhs: Rhs) -> [<T as BitOr<Rhs>>::Output; N]
       where T: BitOr<Rhs>,
             Rhs: Copy;
    fn bitand_all<Rhs>(self, rhs: Rhs) -> [<T as BitAnd<Rhs>>::Output; N]
       where T: BitAnd<Rhs>,
             Rhs: Copy;
    fn bitxor_all<Rhs>(self, rhs: Rhs) -> [<T as BitXor<Rhs>>::Output; N]
       where T: BitXor<Rhs>,
             Rhs: Copy;
    fn add_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: AddAssign<Rhs>,
             Rhs: Copy;
    fn sub_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: SubAssign<Rhs>,
             Rhs: Copy;
    fn mul_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: MulAssign<Rhs>,
             Rhs: Copy;
    fn div_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: DivAssign<Rhs>,
             Rhs: Copy;
    fn rem_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: RemAssign<Rhs>,
             Rhs: Copy;
    fn shl_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: ShlAssign<Rhs>,
             Rhs: Copy;
    fn shr_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: ShrAssign<Rhs>,
             Rhs: Copy;
    fn bitor_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: BitOrAssign<Rhs>,
             Rhs: Copy;
    fn bitand_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: BitAndAssign<Rhs>,
             Rhs: Copy;
    fn bitxor_assign_all<Rhs>(&mut self, rhs: Rhs)
       where T: BitXorAssign<Rhs>,
             Rhs: Copy;
    fn add_all_neg<Rhs>(self, rhs: Rhs) -> [<Rhs as Sub<T>>::Output; N]
       where Rhs: Copy + Sub<T>;
    fn mul_all_inv<Rhs>(self, rhs: Rhs) -> [<Rhs as Div<T>>::Output; N]
       where Rhs: Copy + Div<T>;
    fn neg_all(self) -> [<T as Neg>::Output; N]
       where T: Neg;
    fn neg_assign_all(&mut self)
       where T: Neg<Output = T>;
    fn add_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Add<Rhs>>::Output; N]
       where T: Add<Rhs>;
    fn sub_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Sub<Rhs>>::Output; N]
       where T: Sub<Rhs>;
    fn mul_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Mul<Rhs>>::Output; N]
       where T: Mul<Rhs>;
    fn div_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Div<Rhs>>::Output; N]
       where T: Div<Rhs>;
    fn rem_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Rem<Rhs>>::Output; N]
       where T: Rem<Rhs>;
    fn shl_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Shl<Rhs>>::Output; N]
       where T: Shl<Rhs>;
    fn shr_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Shr<Rhs>>::Output; N]
       where T: Shr<Rhs>;
    fn bitor_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as BitOr<Rhs>>::Output; N]
       where T: BitOr<Rhs>;
    fn bitand_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as BitAnd<Rhs>>::Output; N]
       where T: BitAnd<Rhs>;
    fn bitxor_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as BitXor<Rhs>>::Output; N]
       where T: BitXor<Rhs>;
    fn add_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: AddAssign<Rhs>;
    fn sub_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: SubAssign<Rhs>;
    fn mul_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: MulAssign<Rhs>;
    fn div_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: DivAssign<Rhs>;
    fn rem_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: RemAssign<Rhs>;
    fn shl_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: ShlAssign<Rhs>;
    fn shr_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: ShrAssign<Rhs>;
    fn bitor_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: BitOrAssign<Rhs>;
    fn bitand_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: BitAndAssign<Rhs>;
    fn bitxor_assign_each<Rhs>(&mut self, rhs: [Rhs; N])
       where T: BitXorAssign<Rhs>;
    fn try_mul_dot<Rhs>(self, rhs: [Rhs; N]) -> Option<<T as Mul<Rhs>>::Output>
       where T: Mul<Rhs>,
             <T as Mul<Rhs>>::Output: AddAssign;
    fn proj<Rhs>(
        self,
        rhs: [Rhs; N]
    ) -> [<T as Mul<<<T as Mul<Rhs>>::Output as Div<<T as Mul>::Output>>::Output>>::Output; N]
       where T: Mul<Rhs> + Mul + Mul<<<T as Mul<Rhs>>::Output as Div<<T as Mul>::Output>>::Output> + Copy,
             <T as Mul<Rhs>>::Output: AddAssign + Div<<T as Mul>::Output>,
             <<T as Mul<Rhs>>::Output as Div<<T as Mul>::Output>>::Output: Copy,
             <T as Mul>::Output: AddAssign;
    fn mul_dot_bias<Rhs>(
        self,
        rhs: [Rhs; N],
        bias: <T as Mul<Rhs>>::Output
    ) -> <T as Mul<Rhs>>::Output
       where T: Mul<Rhs>,
             <T as Mul<Rhs>>::Output: AddAssign;
    fn mul_outer<Rhs, const M: usize>(
        &self,
        rhs: &[Rhs; M]
    ) -> [[<T as Mul<Rhs>>::Output; M]; N]
       where T: Mul<Rhs> + Copy,
             Rhs: Copy;
    fn mul_cross<Rhs>(&self, rhs: [&[Rhs; N]; { _ }]) -> [<T as Sub>::Output; N]
       where T: MulAssign<Rhs> + Sub + Copy,
             Rhs: Copy;
    fn try_magnitude_squared(self) -> Option<<T as Mul>::Output>
       where T: Mul + Copy,
             <T as Mul>::Output: AddAssign;
    fn chain<const M: usize>(self, rhs: [T; M]) -> [T; { _ }];
    fn rchain<const M: usize>(self, rhs: [T; M]) -> [T; { _ }];
    fn into_rotate_left(self, n: usize) -> Self;
    fn into_rotate_right(self, n: usize) -> Self;
    fn into_shift_many_left<const M: usize>(
        self,
        items: [T; M]
    ) -> ([T; M], Self);
    fn into_shift_many_right<const M: usize>(
        self,
        items: [T; M]
    ) -> (Self, [T; M]);
    fn into_shift_left(self, item: T) -> (T, Self);
    fn into_shift_right(self, item: T) -> (Self, T);
    fn rotate_left2(&mut self, n: usize);
    fn rotate_right2(&mut self, n: usize);
    fn shift_many_left<const M: usize>(&mut self, items: [T; M]) -> [T; M];
    fn shift_many_right<const M: usize>(&mut self, items: [T; M]) -> [T; M];
    fn shift_left(&mut self, item: T) -> T;
    fn shift_right(&mut self, item: T) -> T;
    fn spread<const M: usize>(self) -> ([[T; { _ }]; M], [T; { _ }]);
    fn spread_ref<const M: usize>(
        &self
    ) -> ([&[Padded<T, M>; { _ }]; M], &[T; { _ }]);
    fn spread_mut<const M: usize>(
        &mut self
    ) -> ([&mut [Padded<T, M>; { _ }]; M], &mut [T; { _ }]);
    fn rspread<const M: usize>(self) -> ([T; { _ }], [[T; { _ }]; M])
       where T: Copy;
    fn rspread_ref<const M: usize>(
        &self
    ) -> (&[T; { _ }], [&[Padded<T, M>; { _ }]; M]);
    fn rspread_mut<const M: usize>(
        &mut self
    ) -> (&mut [T; { _ }], [&mut [Padded<T, M>; { _ }]; M]);
    fn spread_exact<const M: usize>(self) -> [[T; { _ }]; M];
    fn spread_exact_ref<const M: usize>(&self) -> [&[Padded<T, M>; { _ }]; M];
    fn spread_exact_mut<const M: usize>(
        &mut self
    ) -> [&mut [Padded<T, M>; { _ }]; M];
    fn chunks<const M: usize>(self) -> ([[T; M]; { _ }], [T; { _ }]);
    fn chunks_ref<const M: usize>(&self) -> (&[[T; M]; { _ }], &[T; { _ }]);
    fn chunks_mut<const M: usize>(
        &mut self
    ) -> (&mut [[T; M]; { _ }], &mut [T; { _ }]);
    fn rchunks<const M: usize>(self) -> ([T; { _ }], [[T; M]; { _ }]);
    fn rchunks_ref<const M: usize>(&self) -> (&[T; { _ }], &[[T; M]; { _ }]);
    fn rchunks_mut<const M: usize>(
        &mut self
    ) -> (&mut [T; { _ }], &mut [[T; M]; { _ }]);
    fn chunks_exact<const M: usize>(self) -> [[T; M]; { _ }];
    fn chunks_exact_ref<const M: usize>(&self) -> &[[T; M]; { _ }];
    fn chunks_exact_mut<const M: usize>(&mut self) -> &mut [[T; M]; { _ }];
    fn array_simd<const M: usize>(self) -> ([Simd<T, M>; { _ }], [T; { _ }])
       where T: SimdElement,
             LaneCount<M>: SupportedLaneCount;
    fn array_rsimd<const M: usize>(self) -> ([T; { _ }], [Simd<T, M>; { _ }])
       where T: SimdElement,
             LaneCount<M>: SupportedLaneCount;
    fn array_simd_exact<const M: usize>(self) -> [Simd<T, M>; { _ }]
       where T: SimdElement,
             LaneCount<M>: SupportedLaneCount;
    fn split_array<const M: usize>(self) -> ([T; M], [T; { _ }]);
    fn split_array_ref2<const M: usize>(&self) -> (&[T; M], &[T; { _ }]);
    fn split_array_mut2<const M: usize>(
        &mut self
    ) -> (&mut [T; M], &mut [T; { _ }]);
    fn rsplit_array<const M: usize>(self) -> ([T; { _ }], [T; M]);
    fn rsplit_array_ref2<const M: usize>(&self) -> (&[T; { _ }], &[T; M]);
    fn rsplit_array_mut2<const M: usize>(
        &mut self
    ) -> (&mut [T; { _ }], &mut [T; M]);
    fn each_ref2(&self) -> [&T; N];
    fn each_mut2(&mut self) -> [&mut T; N];
    fn bit_reverse_permutation(&mut self);
}Required Methods§
fn split_len(n: usize) -> (usize, usize)
fn rsplit_len(n: usize) -> (usize, usize)
fn split_ptr(&self, n: usize) -> (*const T, *const T)
fn split_mut_ptr(&mut self, n: usize) -> (*mut T, *mut T)
fn rsplit_ptr(&self, n: usize) -> (*const T, *const T)
fn rsplit_mut_ptr(&mut self, n: usize) -> (*mut T, *mut T)
fn fill<F>(fill: F) -> Self
fn rfill<F>(fill: F) -> Self
fn fill_boxed<F>(fill: F) -> Box<Self>
fn rfill_boxed<F>(fill: F) -> Box<Self>
fn fill_boxed_in<F, A>(fill: F, alloc: A) -> Box<Self, A>
fn rfill_boxed_in<F, A>(fill: F, alloc: A) -> Box<Self, A>
fn truncate<const M: usize>(self) -> [T; M]
fn rtruncate<const M: usize>(self) -> [T; M]
fn truncate_ref<const M: usize>(&self) -> &[T; M]
fn rtruncate_ref<const M: usize>(&self) -> &[T; M]
fn truncate_mut<const M: usize>(&mut self) -> &mut [T; M]
fn rtruncate_mut<const M: usize>(&mut self) -> &mut [T; M]
fn resize<const M: usize, F>(self, fill: F) -> [T; M]
fn rresize<const M: usize, F>(self, fill: F) -> [T; M]
fn extend<const M: usize, F>(self, fill: F) -> [T; M]
fn rextend<const M: usize, F>(self, fill: F) -> [T; M]
fn reformulate_length<const M: usize>(self) -> [T; M]
fn reformulate_length_ref<const M: usize>(&self) -> &[T; M]
fn reformulate_length_mut<const M: usize>(&mut self) -> &mut [T; M]
fn try_reformulate_length<const M: usize>(self) -> Result<[T; M], Self>
fn try_reformulate_length_ref<const M: usize>(&self) -> Option<&[T; M]>
fn try_reformulate_length_mut<const M: usize>(&mut self) -> Option<&mut [T; M]>
fn into_collumn(self) -> [[T; 1]; N]
fn as_collumn(&self) -> &[[T; 1]; N]
fn as_collumn_mut(&mut self) -> &mut [[T; 1]; N]
sourcefn map2<Map>(self, map: Map) -> [<Map as FnOnce(T)>::Output; N]where
    Map: FnMut(T),
 
fn map2<Map>(self, map: Map) -> [<Map as FnOnce(T)>::Output; N]where
    Map: FnMut(T),
Maps all values of an array with a given function.
§Example
use array__ops::*;
 
const A: [u8; 4] = [1, 2, 3, 4];
let b = A.map2(|b| -(b as i8));
 
assert_eq!(b, [-1, -2, -3, -4]);fn map_outer<Map>(&self, map: Map) -> [[<Map as FnOnce(T, T)>::Output; N]; N]
fn comap<Map, Rhs>(
    self,
    rhs: [Rhs; N],
    map: Map
) -> [<Map as FnOnce(T, Rhs)>::Output; N]where
    Map: FnMut(T, Rhs),
fn comap_outer<Map, Rhs, const M: usize>( &self, rhs: &[Rhs; M], map: Map ) -> [[<Map as FnOnce(T, Rhs)>::Output; M]; N]
fn flat_map<Map, O, const M: usize>(self, map: Map) -> [O; { _ }]
fn map_assign<Map>(&mut self, map: Map)where
    Map: FnMut(T) -> T,
sourcefn zip<Z>(self, other: [Z; N]) -> [(T, Z); N]
 
fn zip<Z>(self, other: [Z; N]) -> [(T, Z); N]
Combines two arrays with possibly different items into parallel, where each element lines up in the same position.
This method can be executed at compile-time, as opposed to the standard-library method.
§Example
use array__ops::*;
 
const A: [u8; 4] = [4, 3, 2, 1];
const B: [&str; 4] = ["four", "three", "two", "one"];
let c = A.zip(B);
 
assert_eq!(c, [(4, "four"), (3, "three"), (2, "two"), (1, "one")]);fn zip_outer<Z, const M: usize>(&self, other: &[Z; M]) -> [[(T, Z); M]; N]
fn enumerate(self) -> [(usize, T); N]
fn diagonal<const H: usize, const W: usize>(self) -> [[T; W]; H]
sourcefn differentiate(&mut self)
 
fn differentiate(&mut self)
Differentiates array (discrete calculus)
§Example
use array__ops::*;
 
let mut a = [1, 2, 3];
 
a.differentiate();
 
assert_eq!(a, [1, 2 - 1, 3 - 2]);sourcefn integrate(&mut self)
 
fn integrate(&mut self)
Integrates array (discrete calculus)
§Example
use array__ops::*;
 
let mut a = [1, 2, 3];
 
a.integrate();
 
assert_eq!(a, [1, 1 + 2, 1 + 2 + 3])sourcefn reduce<R>(self, reduce: R) -> Option<T>where
    R: FnMut(T, T) -> T,
 
fn reduce<R>(self, reduce: R) -> Option<T>where
    R: FnMut(T, T) -> T,
Reduces elements in array into one element, using a given operand
§Example
use array__ops::ArrayOps;
 
const A: [u8; 3] = [1, 2, 3];
 
let r: u8 = A.reduce(|a, b| a + b).unwrap();
 
assert_eq!(r, 6);fn try_sum(self) -> Option<T>where
    T: AddAssign,
fn sum_from<S>(self, from: S) -> Swhere
    S: AddAssign<T>,
fn try_product(self) -> Option<T>where
    T: MulAssign,
fn product_from<P>(self, from: P) -> Pwhere
    P: MulAssign<T>,
fn max(self) -> Option<T>where
    T: Ord,
fn min(self) -> Option<T>where
    T: Ord,
fn first_max(self) -> Option<T>where
    T: PartialOrd,
fn first_min(self) -> Option<T>where
    T: PartialOrd,
fn argmax(&self) -> Option<usize>where
    T: PartialOrd,
fn argmin(&self) -> Option<usize>where
    T: PartialOrd,
fn add_all<Rhs>(self, rhs: Rhs) -> [<T as Add<Rhs>>::Output; N]
fn sub_all<Rhs>(self, rhs: Rhs) -> [<T as Sub<Rhs>>::Output; N]
fn mul_all<Rhs>(self, rhs: Rhs) -> [<T as Mul<Rhs>>::Output; N]
fn div_all<Rhs>(self, rhs: Rhs) -> [<T as Div<Rhs>>::Output; N]
fn rem_all<Rhs>(self, rhs: Rhs) -> [<T as Rem<Rhs>>::Output; N]
fn shl_all<Rhs>(self, rhs: Rhs) -> [<T as Shl<Rhs>>::Output; N]
fn shr_all<Rhs>(self, rhs: Rhs) -> [<T as Shr<Rhs>>::Output; N]
fn bitor_all<Rhs>(self, rhs: Rhs) -> [<T as BitOr<Rhs>>::Output; N]
fn bitand_all<Rhs>(self, rhs: Rhs) -> [<T as BitAnd<Rhs>>::Output; N]
fn bitxor_all<Rhs>(self, rhs: Rhs) -> [<T as BitXor<Rhs>>::Output; N]
fn add_assign_all<Rhs>(&mut self, rhs: Rhs)
fn sub_assign_all<Rhs>(&mut self, rhs: Rhs)
fn mul_assign_all<Rhs>(&mut self, rhs: Rhs)
fn div_assign_all<Rhs>(&mut self, rhs: Rhs)
fn rem_assign_all<Rhs>(&mut self, rhs: Rhs)
fn shl_assign_all<Rhs>(&mut self, rhs: Rhs)
fn shr_assign_all<Rhs>(&mut self, rhs: Rhs)
fn bitor_assign_all<Rhs>(&mut self, rhs: Rhs)where
    T: BitOrAssign<Rhs>,
    Rhs: Copy,
fn bitand_assign_all<Rhs>(&mut self, rhs: Rhs)where
    T: BitAndAssign<Rhs>,
    Rhs: Copy,
fn bitxor_assign_all<Rhs>(&mut self, rhs: Rhs)where
    T: BitXorAssign<Rhs>,
    Rhs: Copy,
fn add_all_neg<Rhs>(self, rhs: Rhs) -> [<Rhs as Sub<T>>::Output; N]
fn mul_all_inv<Rhs>(self, rhs: Rhs) -> [<Rhs as Div<T>>::Output; N]
fn neg_all(self) -> [<T as Neg>::Output; N]where
    T: Neg,
fn neg_assign_all(&mut self)where
    T: Neg<Output = T>,
fn add_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Add<Rhs>>::Output; N]where
    T: Add<Rhs>,
fn sub_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Sub<Rhs>>::Output; N]where
    T: Sub<Rhs>,
fn mul_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Mul<Rhs>>::Output; N]where
    T: Mul<Rhs>,
fn div_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Div<Rhs>>::Output; N]where
    T: Div<Rhs>,
fn rem_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Rem<Rhs>>::Output; N]where
    T: Rem<Rhs>,
fn shl_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Shl<Rhs>>::Output; N]where
    T: Shl<Rhs>,
fn shr_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as Shr<Rhs>>::Output; N]where
    T: Shr<Rhs>,
fn bitor_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as BitOr<Rhs>>::Output; N]where
    T: BitOr<Rhs>,
fn bitand_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as BitAnd<Rhs>>::Output; N]where
    T: BitAnd<Rhs>,
fn bitxor_each<Rhs>(self, rhs: [Rhs; N]) -> [<T as BitXor<Rhs>>::Output; N]where
    T: BitXor<Rhs>,
fn add_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: AddAssign<Rhs>,
fn sub_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: SubAssign<Rhs>,
fn mul_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: MulAssign<Rhs>,
fn div_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: DivAssign<Rhs>,
fn rem_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: RemAssign<Rhs>,
fn shl_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: ShlAssign<Rhs>,
fn shr_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: ShrAssign<Rhs>,
fn bitor_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: BitOrAssign<Rhs>,
fn bitand_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: BitAndAssign<Rhs>,
fn bitxor_assign_each<Rhs>(&mut self, rhs: [Rhs; N])where
    T: BitXorAssign<Rhs>,
fn try_mul_dot<Rhs>(self, rhs: [Rhs; N]) -> Option<<T as Mul<Rhs>>::Output>
fn proj<Rhs>( self, rhs: [Rhs; N] ) -> [<T as Mul<<<T as Mul<Rhs>>::Output as Div<<T as Mul>::Output>>::Output>>::Output; N]
fn mul_dot_bias<Rhs>( self, rhs: [Rhs; N], bias: <T as Mul<Rhs>>::Output ) -> <T as Mul<Rhs>>::Output
fn mul_outer<Rhs, const M: usize>( &self, rhs: &[Rhs; M] ) -> [[<T as Mul<Rhs>>::Output; M]; N]
sourcefn mul_cross<Rhs>(&self, rhs: [&[Rhs; N]; { _ }]) -> [<T as Sub>::Output; N]
 
fn mul_cross<Rhs>(&self, rhs: [&[Rhs; N]; { _ }]) -> [<T as Sub>::Output; N]
Computes the general cross-product of the two arrays (as if vectors, in the mathematical sense).
§Example
#![feature(generic_const_exprs)]
 
use array__ops::*;
 
const U: [f64; 3] = [1.0, 0.0, 0.0];
const V: [f64; 3] = [0.0, 1.0, 0.0];
 
let w = U.mul_cross([&V]);
 
assert_eq!(w, [0.0, 0.0, 1.0]);fn try_magnitude_squared(self) -> Option<<T as Mul>::Output>
sourcefn chain<const M: usize>(self, rhs: [T; M]) -> [T; { _ }]
 
fn chain<const M: usize>(self, rhs: [T; M]) -> [T; { _ }]
Chains two arrays with the same item together.
§Example
use array__ops::*;
 
let a = ["one", "two"];
let b = ["three"];
 
assert_eq!(a.chain(b), ["one", "two", "three"]);sourcefn rchain<const M: usize>(self, rhs: [T; M]) -> [T; { _ }]
 
fn rchain<const M: usize>(self, rhs: [T; M]) -> [T; { _ }]
Chains two arrays with the same item together in reverse.
§Example
use array__ops::*;
 
let a = ["two", "three"];
let b = ["one"];
 
assert_eq!(a.rchain(b), ["one", "two", "three"]);fn into_rotate_left(self, n: usize) -> Self
fn into_rotate_right(self, n: usize) -> Self
fn into_shift_many_left<const M: usize>(self, items: [T; M]) -> ([T; M], Self)
fn into_shift_many_right<const M: usize>(self, items: [T; M]) -> (Self, [T; M])
fn into_shift_left(self, item: T) -> (T, Self)
fn into_shift_right(self, item: T) -> (Self, T)
fn rotate_left2(&mut self, n: usize)
fn rotate_right2(&mut self, n: usize)
fn shift_many_left<const M: usize>(&mut self, items: [T; M]) -> [T; M]
fn shift_many_right<const M: usize>(&mut self, items: [T; M]) -> [T; M]
fn shift_left(&mut self, item: T) -> T
fn shift_right(&mut self, item: T) -> T
sourcefn spread<const M: usize>(self) -> ([[T; { _ }]; M], [T; { _ }])
 
fn spread<const M: usize>(self) -> ([[T; { _ }]; M], [T; { _ }])
Distributes items of an array equally across a given width, then provides the rest as a separate array.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
 
use array__ops::*;
 
let array = ["ping 1", "pong 1", "ping 2", "pong 2", "ping 3", "pong 3", "uhh..."];
 
let ([ping, pong], rest) = array.spread::<2>();
 
assert_eq!(ping, ["ping 1", "ping 2", "ping 3"]);
assert_eq!(pong, ["pong 1", "pong 2", "pong 3"]);
assert_eq!(rest, ["uhh..."]);sourcefn spread_ref<const M: usize>(
    &self
) -> ([&[Padded<T, M>; { _ }]; M], &[T; { _ }])
 
fn spread_ref<const M: usize>( &self ) -> ([&[Padded<T, M>; { _ }]; M], &[T; { _ }])
Distributes items of an array-slice equally across a given width, then provides the rest as a separate array-slice.
The spread-out slices are given in padded arrays. Each padded item can be borrowed into a reference to the array’s item.
sourcefn spread_mut<const M: usize>(
    &mut self
) -> ([&mut [Padded<T, M>; { _ }]; M], &mut [T; { _ }])
 
fn spread_mut<const M: usize>( &mut self ) -> ([&mut [Padded<T, M>; { _ }]; M], &mut [T; { _ }])
Distributes items of a mutable array-slice equally across a given width, then provides the rest as a separate mutable array-slice.
The spread-out slices are given in padded arrays. Each padded item can be borrowed into a reference to the array’s item.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
 
use array__ops::*;
 
let mut array = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20"];
 
let (threes, _) = array.spread_mut::<3>();
 
for fizz in threes.into_iter().last().unwrap()
{
    **fizz = "fizz";
}
 
let (fives, _) = array.spread_mut::<5>();
 
for buzz in fives.into_iter().last().unwrap()
{
    **buzz = "buzz";
}
 
let (fifteens, _) = array.spread_mut::<15>();
 
for fizzbuzz in fifteens.into_iter().last().unwrap()
{
    **fizzbuzz = "fizzbuzz";
}
 
assert_eq!(array, ["1", "2", "fizz", "4", "buzz", "fizz", "7", "8", "fizz", "buzz", "11", "fizz", "13", "14", "fizzbuzz", "16", "17", "fizz", "19", "buzz"]);
 sourcefn rspread<const M: usize>(self) -> ([T; { _ }], [[T; { _ }]; M])where
    T: Copy,
 
fn rspread<const M: usize>(self) -> ([T; { _ }], [[T; { _ }]; M])where
    T: Copy,
Distributes items of an array equally across a given width, then provides the leftmost rest as a separate array.
sourcefn rspread_ref<const M: usize>(
    &self
) -> (&[T; { _ }], [&[Padded<T, M>; { _ }]; M])
 
fn rspread_ref<const M: usize>( &self ) -> (&[T; { _ }], [&[Padded<T, M>; { _ }]; M])
Distributes items of an array-slice equally across a given width, then provides the leftmost rest as a separate array-slice.
The spread-out slices are given in padded arrays. Each padded item can be borrowed into a reference to the array’s item.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
#![feature(array_methods)]
 
use array__ops::*;
 
let array = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20];
 
let (zero, [odd, even]) = array.rspread_ref::<2>();
 
assert_eq!(*zero, [0]);
assert_eq!(odd.each_ref().map(|padding| **padding), [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]);
assert_eq!(even.each_ref().map(|padding| **padding), [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]);sourcefn rspread_mut<const M: usize>(
    &mut self
) -> (&mut [T; { _ }], [&mut [Padded<T, M>; { _ }]; M])
 
fn rspread_mut<const M: usize>( &mut self ) -> (&mut [T; { _ }], [&mut [Padded<T, M>; { _ }]; M])
Distributes items of a mutable array-slice equally across a given width, then provides the leftmost rest as a separate mutable array-slice.
The spread-out slices are given in padded arrays. Each padded item can be borrowed into a reference to the array’s item.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
#![feature(array_methods)]
 
use array__ops::*;
 
let mut array = ["the", "beat", "goes", "1", "2", "3", "4", "5", "6", "7", "8"];
 
let (start, [boots, n, cats, and]) = array.rspread_mut::<4>();
 
for boots in boots
{
    **boots = "boots";
}
for n in n
{
    **n = "n";
}
for cats in cats
{
    **cats = "cats";
}
for and in and
{
    **and = "and";
}
 
assert_eq!(array, ["the", "beat", "goes", "boots", "n", "cats", "and", "boots", "n", "cats", "and"]);sourcefn spread_exact<const M: usize>(self) -> [[T; { _ }]; M]
 
fn spread_exact<const M: usize>(self) -> [[T; { _ }]; M]
Distributes items of an array equally across a given width, with no rest.
The width must be a factor of the array length, otherwise it will not compile.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
 
use array__ops::*;
 
let array = *b"aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ";
 
let [lower_case, upper_case] = array.spread_exact::<2>();
 
assert_eq!(lower_case, *b"abcdefghijklmnopqrstuvwxyz");
assert_eq!(upper_case, *b"ABCDEFGHIJKLMNOPQRSTUVWXYZ");sourcefn spread_exact_ref<const M: usize>(&self) -> [&[Padded<T, M>; { _ }]; M]
 
fn spread_exact_ref<const M: usize>(&self) -> [&[Padded<T, M>; { _ }]; M]
Distributes items of an array-slice equally across a given width, with no rest.
The width must be a factor of the array length, otherwise it will not compile.
The spread-out slices are given in padded arrays. Each padded item can be borrowed into a reference to the array’s item.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
#![feature(array_methods)]
 
use array__ops::*;
 
let statement = ["s", "he", "be", "lie", "ve", "d"];
 
let [interpretation2, interpretation1] = statement.spread_exact_ref::<2>();
 
assert_eq!(interpretation1, &["he", "lie", "d"]);
assert_eq!(interpretation2, &["s", "be", "ve"]);sourcefn spread_exact_mut<const M: usize>(
    &mut self
) -> [&mut [Padded<T, M>; { _ }]; M]
 
fn spread_exact_mut<const M: usize>( &mut self ) -> [&mut [Padded<T, M>; { _ }]; M]
Distributes items of a mutable array-slice equally across a given width, with no rest.
The width must be a factor of the array length, otherwise it will not compile.
The spread-out slices are given in padded arrays. Each padded item can be borrowed into a reference to the array’s item.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
#![feature(array_methods)]
 
use array__ops::*;
 
let mut array = *b"aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ";
 
let [lower_case, upper_case] = array.spread_exact_mut::<2>();
 
assert_eq!(lower_case.each_ref().map(|padding| padding.borrow()), b"abcdefghijklmnopqrstuvwxyz".each_ref());
assert_eq!(upper_case.each_ref().map(|padding| padding.borrow()), b"ABCDEFGHIJKLMNOPQRSTUVWXYZ".each_ref());
 
for c in upper_case
{
    **c = b'_';
}
 
assert_eq!(array, *b"a_b_c_d_e_f_g_h_i_j_k_l_m_n_o_p_q_r_s_t_u_v_w_x_y_z_")sourcefn chunks<const M: usize>(self) -> ([[T; M]; { _ }], [T; { _ }])
 
fn chunks<const M: usize>(self) -> ([[T; M]; { _ }], [T; { _ }])
Divides an array into chunks, then yielding the rest in a separate array.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
 
use array__ops::*;
 
let array = ["carrot", "potato", "beet", "tomato", "kiwi", "banana", "cherry", "peach", "strawberry", "nine volt batteries"];
 
let ([root_vegetables, technically_berries, stone_fruits], not_for_human_consumption) = array.chunks::<3>();
 
assert_eq!(root_vegetables, ["carrot", "potato", "beet"]);
assert_eq!(technically_berries, ["tomato", "kiwi", "banana"]);
assert_eq!(stone_fruits, ["cherry", "peach", "strawberry"]);
assert_eq!(not_for_human_consumption, ["nine volt batteries"]);sourcefn chunks_ref<const M: usize>(&self) -> (&[[T; M]; { _ }], &[T; { _ }])
 
fn chunks_ref<const M: usize>(&self) -> (&[[T; M]; { _ }], &[T; { _ }])
Divides an array-slice into chunks, then yielding the rest in a separate array-slice.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
 
use array__ops::*;
 
let transistors = ["2N3904", "2N2222A", "BC107", "AC127", "OC7", "NKT275", "2SK30A", "2N5458", "J108", "2N7000", "BS170"];
 
let ([silicon_bjts, germanium_bjts, jfets], mosfets) = transistors.chunks_ref::<3>();
 
assert_eq!(silicon_bjts, &["2N3904", "2N2222A", "BC107"]);
assert_eq!(germanium_bjts, &["AC127", "OC7", "NKT275"]);
assert_eq!(jfets, &["2SK30A", "2N5458", "J108"]);
assert_eq!(mosfets, &["2N7000", "BS170"]);sourcefn chunks_mut<const M: usize>(
    &mut self
) -> (&mut [[T; M]; { _ }], &mut [T; { _ }])
 
fn chunks_mut<const M: usize>( &mut self ) -> (&mut [[T; M]; { _ }], &mut [T; { _ }])
Divides a mutable array-slice into chunks, then yielding the rest in a separate mutable array-slice.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
 
use array__ops::*;
 
let mut array = [0, 1, 0, 1, 0, 1, 6];
 
let (pairs, last) = array.chunks_mut::<2>();
 
for (i, pair) in pairs.into_iter().enumerate()
{
    for number in pair
    {
        *number += i*2;
    }
}
 
assert_eq!(array, [0, 1, 2, 3, 4, 5, 6]);sourcefn rchunks<const M: usize>(self) -> ([T; { _ }], [[T; M]; { _ }])
 
fn rchunks<const M: usize>(self) -> ([T; { _ }], [[T; M]; { _ }])
Divides a mutable array-slice into chunks, then yielding the leftmost rest in a separate mutable array-slice.
sourcefn rchunks_ref<const M: usize>(&self) -> (&[T; { _ }], &[[T; M]; { _ }])
 
fn rchunks_ref<const M: usize>(&self) -> (&[T; { _ }], &[[T; M]; { _ }])
Divides an array-slice into chunks, then yielding the leftmost rest in a separate array-slice.
sourcefn rchunks_mut<const M: usize>(
    &mut self
) -> (&mut [T; { _ }], &mut [[T; M]; { _ }])
 
fn rchunks_mut<const M: usize>( &mut self ) -> (&mut [T; { _ }], &mut [[T; M]; { _ }])
Divides a mutable array-slice into chunks, then yielding the leftmost rest in a separate array-slice.
sourcefn chunks_exact<const M: usize>(self) -> [[T; M]; { _ }]
 
fn chunks_exact<const M: usize>(self) -> [[T; M]; { _ }]
Divides an array into chunks, with no rest.
The chunk length must be a factor of the array length, otherwise it will not compile.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
 
use array__ops::*;
 
let array = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9];
 
let [lower_half, upper_half] = array.chunks_exact::<5>();
 
assert_eq!(lower_half, [0.0, 0.1, 0.2, 0.3, 0.4]);
assert_eq!(upper_half, [0.5, 0.6, 0.7, 0.8, 0.9]);sourcefn chunks_exact_ref<const M: usize>(&self) -> &[[T; M]; { _ }]
 
fn chunks_exact_ref<const M: usize>(&self) -> &[[T; M]; { _ }]
Divides an array-slice into chunks, with no rest.
The chunk length must be a factor of the array length, otherwise it will not compile.
§Example
#![feature(generic_const_exprs)]
#![feature(generic_arg_infer)]
 
use array__ops::*;
 
let array = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9];
 
let [lower_half, upper_half] = array.chunks_exact_ref::<5>();
 
assert_eq!(lower_half, &[0.0, 0.1, 0.2, 0.3, 0.4]);
assert_eq!(upper_half, &[0.5, 0.6, 0.7, 0.8, 0.9]);sourcefn chunks_exact_mut<const M: usize>(&mut self) -> &mut [[T; M]; { _ }]
 
fn chunks_exact_mut<const M: usize>(&mut self) -> &mut [[T; M]; { _ }]
Divides a mutable array-slice into chunks, with no rest.
The chunk length must be a factor of the array length, otherwise it will not compile.
fn array_simd<const M: usize>(self) -> ([Simd<T, M>; { _ }], [T; { _ }])
fn array_rsimd<const M: usize>(self) -> ([T; { _ }], [Simd<T, M>; { _ }])
fn array_simd_exact<const M: usize>(self) -> [Simd<T, M>; { _ }]
sourcefn split_array<const M: usize>(self) -> ([T; M], [T; { _ }])
 
fn split_array<const M: usize>(self) -> ([T; M], [T; { _ }])
Splits an array at a chosen index.
sourcefn split_array_ref2<const M: usize>(&self) -> (&[T; M], &[T; { _ }])
 
fn split_array_ref2<const M: usize>(&self) -> (&[T; M], &[T; { _ }])
Splits an array at a chosen index as array-slices.
sourcefn split_array_mut2<const M: usize>(&mut self) -> (&mut [T; M], &mut [T; { _ }])
 
fn split_array_mut2<const M: usize>(&mut self) -> (&mut [T; M], &mut [T; { _ }])
Splits an array at a chosen index as mutable array-slices.
sourcefn rsplit_array<const M: usize>(self) -> ([T; { _ }], [T; M])
 
fn rsplit_array<const M: usize>(self) -> ([T; { _ }], [T; M])
Splits an array at a chosen index, where the index goes from right to left.
sourcefn rsplit_array_ref2<const M: usize>(&self) -> (&[T; { _ }], &[T; M])
 
fn rsplit_array_ref2<const M: usize>(&self) -> (&[T; { _ }], &[T; M])
Splits an array at a chosen index as array-slices, where the index goes from right to left.
sourcefn rsplit_array_mut2<const M: usize>(
    &mut self
) -> (&mut [T; { _ }], &mut [T; M])
 
fn rsplit_array_mut2<const M: usize>( &mut self ) -> (&mut [T; { _ }], &mut [T; M])
Splits an array at a chosen index as mutable array-slices, where the index goes from right to left.
fn each_ref2(&self) -> [&T; N]
fn each_mut2(&mut self) -> [&mut T; N]
sourcefn bit_reverse_permutation(&mut self)
 
fn bit_reverse_permutation(&mut self)
Performs the bit-reverse permutation. Length must be a power of 2.
§Example
use array__ops::*;
 
let mut arr = [0b000, 0b001, 0b010, 0b011, 0b100, 0b101, 0b110, 0b111];
 
arr.bit_reverse_permutation();
 
assert_eq!(arr, [0b000, 0b100, 0b010, 0b110, 0b001, 0b101, 0b011, 0b111])