Struct ark_linear_sumcheck::ml_sumcheck::protocol::IPForMLSumcheck[][src]

pub struct IPForMLSumcheck<F: Field> { /* fields omitted */ }

Interactive Proof for Multilinear Sumcheck

Implementations

impl<F: Field> IPForMLSumcheck<F>[src]

pub fn prover_init(
    polynomial: &ListOfProductsOfPolynomials<F>
) -> ProverState<F>
[src]

initialize the prover to argue for the sum of polynomial over {0,1}^num_vars

The polynomial is represented by a list of products of polynomials along with its coefficient that is meant to be added together.

This data structure of the polynomial is a list of list of (coefficient, DenseMultilinearExtension).

  • Number of products n = polynomial.products.len(),
  • Number of multiplicands of ith product m_i = polynomial.products[i].1.len(),
  • Coefficient of ith product c_i = polynomial.products[i].0

The resulting polynomial is

$$\sum_{i=0}^{n}C_i\cdot\prod_{j=0}^{m_i}P_{ij}$$

pub fn prove_round(
    prover_state: ProverState<F>,
    v_msg: &Option<VerifierMsg<F>>
) -> (ProverMsg<F>, ProverState<F>)
[src]

receive message from verifier, generate prover message, and proceed to next round

Main algorithm used is from section 3.2 of XZZPS19.

impl<F: Field> IPForMLSumcheck<F>[src]

pub fn verifier_init(index_info: &PolynomialInfo) -> VerifierState<F>[src]

initialize the verifier

pub fn verify_round<R: RngCore>(
    prover_msg: ProverMsg<F>,
    verifier_state: VerifierState<F>,
    rng: &mut R
) -> (Option<VerifierMsg<F>>, VerifierState<F>)
[src]

Run verifier at current round, given prover message

Normally, this function should perform actual verification. Instead, verify_round only samples and stores randomness and perform verifications altogether in check_and_generate_subclaim at the last step.

pub fn check_and_generate_subclaim(
    verifier_state: VerifierState<F>,
    asserted_sum: F
) -> Result<SubClaim<F>, Error>
[src]

verify the sumcheck phase, and generate the subclaim

If the asserted sum is correct, then the multilinear polynomial evaluated at subclaim.point is subclaim.expected_evaluation. Otherwise, it is highly unlikely that those two will be equal. Larger field size guarantees smaller soundness error.

pub fn sample_round<R: RngCore>(rng: &mut R) -> VerifierMsg<F>[src]

simulate a verifier message without doing verification

Given the same calling context, random_oracle_round output exactly the same message as verify_round

Auto Trait Implementations

impl<F> RefUnwindSafe for IPForMLSumcheck<F> where
    F: RefUnwindSafe

impl<F> Send for IPForMLSumcheck<F>

impl<F> Sync for IPForMLSumcheck<F>

impl<F> Unpin for IPForMLSumcheck<F> where
    F: Unpin

impl<F> UnwindSafe for IPForMLSumcheck<F> where
    F: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T

type Output = T

Should always be Self

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<V, T> VZip<V> for T where
    V: MultiLane<T>,