1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright (c) Aptos
// SPDX-License-Identifier: Apache-2.0

use crate::{
    application::types::{PeerError, PeerInfo},
    transport::ConnectionMetadata,
};
use aptos_config::network_id::{NetworkId, PeerNetworkId};
use aptos_infallible::{RwLock, RwLockWriteGuard};
use aptos_types::{account_address::AccountAddress, PeerId};
use std::{
    collections::{hash_map::Entry, HashMap},
    fmt::Debug,
    hash::Hash,
    sync::Arc,
};

/// Metadata storage for peers across all of networking.  Splits storage of information across
/// networks to prevent different networks from affecting each other
#[derive(Debug)]
pub struct PeerMetadataStorage {
    storage: HashMap<NetworkId, LockingHashMap<PeerId, PeerInfo>>,
}

impl PeerMetadataStorage {
    #[cfg(any(test, feature = "testing", feature = "fuzzing"))]
    pub fn test() -> Arc<PeerMetadataStorage> {
        PeerMetadataStorage::new(&[NetworkId::Validator])
    }

    /// Create a new `PeerMetadataStorage` `NetworkId`s must be known at construction time
    pub fn new(network_ids: &[NetworkId]) -> Arc<PeerMetadataStorage> {
        let mut peer_metadata_storage = PeerMetadataStorage {
            storage: HashMap::new(),
        };
        network_ids.iter().for_each(|network_id| {
            peer_metadata_storage
                .storage
                .insert(*network_id, LockingHashMap::new());
        });
        Arc::new(peer_metadata_storage)
    }

    pub fn networks(&self) -> impl Iterator<Item = NetworkId> + '_ {
        self.storage.keys().copied()
    }

    /// Handle common logic of getting a network
    fn get_network(&self, network_id: NetworkId) -> &LockingHashMap<AccountAddress, PeerInfo> {
        self.storage
            .get(&network_id)
            .unwrap_or_else(|| panic!("Unexpected network requested: {}", network_id))
    }

    pub fn read(&self, peer_network_id: PeerNetworkId) -> Option<PeerInfo> {
        let network = self.get_network(peer_network_id.network_id());
        network.read(&peer_network_id.peer_id())
    }

    pub fn read_filtered<F: FnMut(&(&PeerId, &PeerInfo)) -> bool>(
        &self,
        network_id: NetworkId,
        filter: F,
    ) -> HashMap<PeerNetworkId, PeerInfo> {
        to_peer_network_ids(
            network_id,
            self.get_network(network_id).read_filtered(filter),
        )
    }

    pub fn keys(&self, network_id: NetworkId) -> Vec<PeerNetworkId> {
        self.get_network(network_id)
            .keys()
            .into_iter()
            .map(|peer_id| PeerNetworkId::new(network_id, peer_id))
            .collect()
    }

    /// Read a clone of the entire state
    pub fn read_all(&self, network_id: NetworkId) -> HashMap<PeerNetworkId, PeerInfo> {
        to_peer_network_ids(network_id, self.get_network(network_id).read_all())
    }

    /// Insert new entry
    pub fn insert(&self, peer_network_id: PeerNetworkId, new_value: PeerInfo) {
        self.get_network(peer_network_id.network_id())
            .insert(peer_network_id.peer_id(), new_value)
    }

    /// Remove old entries
    pub fn remove(&self, peer_network_id: &PeerNetworkId) {
        self.get_network(peer_network_id.network_id())
            .remove(&peer_network_id.peer_id())
    }

    /// Take in a function to modify the data, must handle concurrency control with the input function
    pub fn write<F: FnOnce(&mut Entry<PeerId, PeerInfo>) -> Result<(), PeerError>>(
        &self,
        peer_network_id: PeerNetworkId,
        modifier: F,
    ) -> Result<(), PeerError> {
        self.get_network(peer_network_id.network_id())
            .write(peer_network_id.peer_id(), modifier)
    }

    /// Get the underlying `RwLock` of the map.  Usage is discouraged as it leads to the possiblity of
    /// leaving the lock held for a long period of time.  However, not everything fits into the `write`
    /// model.
    pub fn write_lock(
        &self,
        network_id: NetworkId,
    ) -> RwLockWriteGuard<'_, HashMap<PeerId, PeerInfo>> {
        self.get_network(network_id).write_lock()
    }

    pub fn insert_connection(
        &self,
        network_id: NetworkId,
        connection_metadata: ConnectionMetadata,
    ) {
        self.write_lock(network_id)
            .entry(connection_metadata.remote_peer_id)
            .and_modify(|entry| entry.active_connection = connection_metadata.clone())
            .or_insert_with(|| PeerInfo::new(connection_metadata));
    }

    pub fn remove_connection(
        &self,
        network_id: NetworkId,
        connection_metadata: &ConnectionMetadata,
    ) {
        let mut map = self.write_lock(network_id);

        // Don't remove the peer if the connection doesn't match!
        if let Entry::Occupied(entry) = map.entry(connection_metadata.remote_peer_id) {
            // For now, remove the peer entirely, we could in the future have multiple connections for a peer
            if entry.get().active_connection.connection_id == connection_metadata.connection_id {
                entry.remove();
            }
        }
    }
}

fn to_peer_network_ids(
    network_id: NetworkId,
    map: HashMap<PeerId, PeerInfo>,
) -> HashMap<PeerNetworkId, PeerInfo> {
    map.into_iter()
        .map(|(peer_id, peer_info)| (PeerNetworkId::new(network_id, peer_id), peer_info))
        .collect()
}

/// A generic locking hash map with ability to read before write consistency
#[derive(Debug)]
pub struct LockingHashMap<Key: Clone + Debug + Eq + Hash, Value: Clone + Debug> {
    map: RwLock<HashMap<Key, Value>>,
}

impl<Key, Value> LockingHashMap<Key, Value>
where
    Key: Clone + Debug + Eq + Hash,
    Value: Clone + Debug,
{
    pub fn new() -> Self {
        Self {
            map: RwLock::new(HashMap::new()),
        }
    }

    /// Get a clone of the value
    pub fn read(&self, key: &Key) -> Option<Value> {
        self.map.read().get(key).cloned()
    }

    /// Filtered read clone based on keys or values
    pub fn read_filtered<F: FnMut(&(&Key, &Value)) -> bool>(
        &self,
        filter: F,
    ) -> HashMap<Key, Value> {
        self.map
            .read()
            .iter()
            .filter(filter)
            .map(|(key, value)| (key.clone(), value.clone()))
            .collect()
    }

    /// All keys of the hash map
    pub fn keys(&self) -> Vec<Key> {
        self.map.read().keys().cloned().collect()
    }

    /// Read a clone of the entire state
    pub fn read_all(&self) -> HashMap<Key, Value> {
        self.map.read().clone()
    }

    /// Insert new entry
    pub fn insert(&self, key: Key, new_value: Value) {
        let mut map = self.map.write();
        map.entry(key)
            .and_modify(|value| *value = new_value.clone())
            .or_insert_with(|| new_value);
    }

    /// Remove old entries
    pub fn remove(&self, key: &Key) {
        let mut map = self.map.write();
        map.remove(key);
    }

    /// Take in a function to modify the data, must handle concurrency control with the input function
    pub fn write<F: FnOnce(&mut Entry<Key, Value>) -> Result<(), PeerError>>(
        &self,
        key: Key,
        modifier: F,
    ) -> Result<(), PeerError> {
        let mut map = self.map.write();
        modifier(&mut map.entry(key))
    }

    /// Get the underlying `RwLock` of the map.  Usage is discouraged as it leads to the possiblity of
    /// leaving the lock held for a long period of time.  However, not everything fits into the `write`
    /// model.
    pub fn write_lock(&self) -> RwLockWriteGuard<'_, HashMap<Key, Value>> {
        self.map.write()
    }
}