pub const HOLOGRAPHIC_BATCH_BIND: &str = r#"
// TropicalDualClifford representation for GPU
// We use a simplified 8-dimensional Clifford representation
struct TDC {
// Tropical component (max element)
tropical: f32,
// Dual component (real and dual parts)
dual_real: f32,
dual_dual: f32,
// Clifford algebra coefficients (8D: scalar, 3 vectors, 3 bivectors, pseudoscalar)
clifford: array<f32, 8>,
// Padding for alignment
_padding: array<f32, 5>,
}
@group(0) @binding(0) var<storage, read> keys: array<TDC>;
@group(0) @binding(1) var<storage, read> values: array<TDC>;
@group(0) @binding(2) var<storage, read_write> results: array<TDC>;
@group(0) @binding(3) var<uniform> params: array<u32, 4>; // [count, 0, 0, 0]
// Cayley table for 3D Clifford algebra Cl(3,0)
// Product signs: e_i * e_j where i,j are grade indices
fn cayley_sign(i: u32, j: u32) -> f32 {
// Simplified: for vectors e_i * e_i = 1, e_i * e_j = -e_j * e_i for i != j
let signs = array<array<f32, 8>, 8>(
// 1 e1 e2 e3 e12 e13 e23 e123
array<f32, 8>(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0), // 1
array<f32, 8>(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0), // e1
array<f32, 8>(1.0, -1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0), // e2
array<f32, 8>(1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0), // e3
array<f32, 8>(1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, 1.0), // e12
array<f32, 8>(1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0), // e13
array<f32, 8>(1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, 1.0), // e23
array<f32, 8>(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0), // e123
);
return signs[i][j];
}
// Result index for e_i * e_j
fn cayley_index(i: u32, j: u32) -> u32 {
let indices = array<array<u32, 8>, 8>(
// 1 e1 e2 e3 e12 e13 e23 e123
array<u32, 8>(0u, 1u, 2u, 3u, 4u, 5u, 6u, 7u), // 1
array<u32, 8>(1u, 0u, 4u, 5u, 2u, 3u, 7u, 6u), // e1
array<u32, 8>(2u, 4u, 0u, 6u, 1u, 7u, 3u, 5u), // e2
array<u32, 8>(3u, 5u, 6u, 0u, 7u, 1u, 2u, 4u), // e3
array<u32, 8>(4u, 2u, 1u, 7u, 0u, 6u, 5u, 3u), // e12
array<u32, 8>(5u, 3u, 7u, 1u, 6u, 0u, 4u, 2u), // e13
array<u32, 8>(6u, 7u, 3u, 2u, 5u, 4u, 0u, 1u), // e23
array<u32, 8>(7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u), // e123
);
return indices[i][j];
}
@compute @workgroup_size(64)
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
let idx = global_id.x;
let count = params[0];
if (idx >= count) {
return;
}
let key = keys[idx];
let value = values[idx];
var result: TDC;
// Binding uses geometric product on Clifford components
// result = key * value (geometric product)
for (var i = 0u; i < 8u; i = i + 1u) {
result.clifford[i] = 0.0;
}
for (var i = 0u; i < 8u; i = i + 1u) {
for (var j = 0u; j < 8u; j = j + 1u) {
let target = cayley_index(i, j);
let sign = cayley_sign(i, j);
result.clifford[target] += sign * key.clifford[i] * value.clifford[j];
}
}
// Tropical: max of both (binding produces new tropical value)
result.tropical = max(key.tropical, value.tropical);
// Dual: product rule for dual numbers
result.dual_real = key.dual_real * value.dual_real;
result.dual_dual = key.dual_real * value.dual_dual + key.dual_dual * value.dual_real;
results[idx] = result;
}
"#;Expand description
Batch binding operation for holographic memory Computes key ⊛ value for multiple pairs using Clifford geometric product