HOLOGRAPHIC_BATCH_BIND

Constant HOLOGRAPHIC_BATCH_BIND 

Source
pub const HOLOGRAPHIC_BATCH_BIND: &str = r#"
// TropicalDualClifford representation for GPU
// We use a simplified 8-dimensional Clifford representation
struct TDC {
    // Tropical component (max element)
    tropical: f32,
    // Dual component (real and dual parts)
    dual_real: f32,
    dual_dual: f32,
    // Clifford algebra coefficients (8D: scalar, 3 vectors, 3 bivectors, pseudoscalar)
    clifford: array<f32, 8>,
    // Padding for alignment
    _padding: array<f32, 5>,
}

@group(0) @binding(0) var<storage, read> keys: array<TDC>;
@group(0) @binding(1) var<storage, read> values: array<TDC>;
@group(0) @binding(2) var<storage, read_write> results: array<TDC>;
@group(0) @binding(3) var<uniform> params: array<u32, 4>; // [count, 0, 0, 0]

// Cayley table for 3D Clifford algebra Cl(3,0)
// Product signs: e_i * e_j where i,j are grade indices
fn cayley_sign(i: u32, j: u32) -> f32 {
    // Simplified: for vectors e_i * e_i = 1, e_i * e_j = -e_j * e_i for i != j
    let signs = array<array<f32, 8>, 8>(
        // 1    e1   e2   e3   e12  e13  e23  e123
        array<f32, 8>(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0),   // 1
        array<f32, 8>(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, -1.0, 1.0),  // e1
        array<f32, 8>(1.0, -1.0, 1.0, 1.0, 1.0, -1.0, 1.0, 1.0), // e2
        array<f32, 8>(1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 1.0), // e3
        array<f32, 8>(1.0, -1.0, 1.0, -1.0, -1.0, 1.0, 1.0, 1.0), // e12
        array<f32, 8>(1.0, -1.0, 1.0, 1.0, -1.0, -1.0, 1.0, 1.0), // e13
        array<f32, 8>(1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, 1.0), // e23
        array<f32, 8>(1.0, 1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0), // e123
    );
    return signs[i][j];
}

// Result index for e_i * e_j
fn cayley_index(i: u32, j: u32) -> u32 {
    let indices = array<array<u32, 8>, 8>(
        // 1    e1   e2   e3   e12  e13  e23  e123
        array<u32, 8>(0u, 1u, 2u, 3u, 4u, 5u, 6u, 7u),   // 1
        array<u32, 8>(1u, 0u, 4u, 5u, 2u, 3u, 7u, 6u),   // e1
        array<u32, 8>(2u, 4u, 0u, 6u, 1u, 7u, 3u, 5u),   // e2
        array<u32, 8>(3u, 5u, 6u, 0u, 7u, 1u, 2u, 4u),   // e3
        array<u32, 8>(4u, 2u, 1u, 7u, 0u, 6u, 5u, 3u),   // e12
        array<u32, 8>(5u, 3u, 7u, 1u, 6u, 0u, 4u, 2u),   // e13
        array<u32, 8>(6u, 7u, 3u, 2u, 5u, 4u, 0u, 1u),   // e23
        array<u32, 8>(7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u),   // e123
    );
    return indices[i][j];
}

@compute @workgroup_size(64)
fn main(@builtin(global_invocation_id) global_id: vec3<u32>) {
    let idx = global_id.x;
    let count = params[0];

    if (idx >= count) {
        return;
    }

    let key = keys[idx];
    let value = values[idx];

    var result: TDC;

    // Binding uses geometric product on Clifford components
    // result = key * value (geometric product)
    for (var i = 0u; i < 8u; i = i + 1u) {
        result.clifford[i] = 0.0;
    }

    for (var i = 0u; i < 8u; i = i + 1u) {
        for (var j = 0u; j < 8u; j = j + 1u) {
            let target = cayley_index(i, j);
            let sign = cayley_sign(i, j);
            result.clifford[target] += sign * key.clifford[i] * value.clifford[j];
        }
    }

    // Tropical: max of both (binding produces new tropical value)
    result.tropical = max(key.tropical, value.tropical);

    // Dual: product rule for dual numbers
    result.dual_real = key.dual_real * value.dual_real;
    result.dual_dual = key.dual_real * value.dual_dual + key.dual_dual * value.dual_real;

    results[idx] = result;
}
"#;
Expand description

Batch binding operation for holographic memory Computes key ⊛ value for multiple pairs using Clifford geometric product