pub struct AdaptiveDispatchPolicy { /* private fields */ }Expand description
Adaptive dispatch policy that learns optimal CPU/GPU thresholds
Implementations§
Source§impl AdaptiveDispatchPolicy
impl AdaptiveDispatchPolicy
pub fn new() -> Self
Sourcepub fn should_use_gpu(&mut self, operation_type: &str, data_size: usize) -> bool
pub fn should_use_gpu(&mut self, operation_type: &str, data_size: usize) -> bool
Determine if GPU should be used for this operation
Sourcepub fn update_from_benchmark(&mut self, benchmark: DispatchBenchmark)
pub fn update_from_benchmark(&mut self, benchmark: DispatchBenchmark)
Update performance profile based on benchmark results
Sourcepub fn get_crossover_points(&self) -> &HashMap<String, usize>
pub fn get_crossover_points(&self) -> &HashMap<String, usize>
Get current crossover points
Trait Implementations§
Auto Trait Implementations§
impl Freeze for AdaptiveDispatchPolicy
impl RefUnwindSafe for AdaptiveDispatchPolicy
impl Send for AdaptiveDispatchPolicy
impl Sync for AdaptiveDispatchPolicy
impl Unpin for AdaptiveDispatchPolicy
impl UnwindSafe for AdaptiveDispatchPolicy
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.