1use crate::{
17 ChowClass, EnumerativeError, Grassmannian, IntersectionNumber, IntersectionRing,
18 ProjectiveSpace, SchubertClass,
19};
20use core::marker::PhantomData;
21
22#[derive(Debug, Clone, Copy)]
24pub struct EnumerativeVerified;
25
26#[derive(Debug, Clone, Copy)]
28pub struct IntersectionVerified;
29
30#[derive(Debug, Clone, Copy)]
32pub struct SchubertVerified;
33
34#[derive(Debug, Clone, Copy)]
36pub struct TropicalVerified;
37
38#[derive(Clone, Debug)]
40pub struct VerifiedContractProjectiveSpace {
41 inner: ProjectiveSpace,
42 _verification: PhantomData<IntersectionVerified>,
43}
44
45impl VerifiedContractProjectiveSpace {
46 pub fn new(dimension: usize) -> Result<Self, EnumerativeError> {
53 if dimension == 0 {
54 return Err(EnumerativeError::InvalidDimension(
55 "Dimension must be positive".to_string(),
56 ));
57 }
58
59 Ok(Self {
60 inner: ProjectiveSpace::new(dimension),
61 _verification: PhantomData,
62 })
63 }
64
65 pub fn intersect(
73 &self,
74 curve1: &VerifiedChowClass,
75 curve2: &VerifiedChowClass,
76 ) -> VerifiedIntersectionNumber {
77 let intersection = self.inner.intersect(&curve1.inner, &curve2.inner);
78
79 VerifiedIntersectionNumber {
80 inner: intersection,
81 _verification: PhantomData,
82 }
83 }
84
85 pub fn dimension(&self) -> usize {
90 self.inner.dimension
91 }
92
93 pub fn verify_bezout_theorem(&self, degree1: usize, degree2: usize) -> bool {
98 if self.dimension() == 2 {
99 let curve1 = VerifiedChowClass::hypersurface(degree1).unwrap();
100 let curve2 = VerifiedChowClass::hypersurface(degree2).unwrap();
101
102 let intersection = self.intersect(&curve1, &curve2);
103
104 intersection.multiplicity() == degree1 * degree2
106 } else {
107 true }
109 }
110
111 pub fn verify_intersection_axioms(&self) -> bool {
118 let line1 = VerifiedChowClass::hypersurface(1).unwrap();
120 let line2 = VerifiedChowClass::hypersurface(1).unwrap();
121 let conic = VerifiedChowClass::hypersurface(2).unwrap();
122
123 let int_12 = self.intersect(&line1, &line2);
125 let int_21 = self.intersect(&line2, &line1);
126 let commutativity = int_12.multiplicity() == int_21.multiplicity();
127
128 let int_line_conic = self.intersect(&line1, &conic);
130 let consistency = int_line_conic.multiplicity() > 0 && int_line_conic.multiplicity() <= 10;
131
132 commutativity && consistency
133 }
134}
135
136#[derive(Clone, Debug)]
138pub struct VerifiedChowClass {
139 inner: ChowClass,
140 _verification: PhantomData<IntersectionVerified>,
141}
142
143impl VerifiedChowClass {
144 pub fn hypersurface(degree: usize) -> Result<Self, EnumerativeError> {
151 if degree == 0 {
152 return Err(EnumerativeError::InvalidDimension(
153 "Degree must be positive".to_string(),
154 ));
155 }
156
157 Ok(Self {
158 inner: ChowClass::hypersurface(degree as i64),
159 _verification: PhantomData,
160 })
161 }
162
163 pub fn multiply(&self, other: &Self) -> Self {
169 Self {
170 inner: self.inner.multiply(&other.inner),
171 _verification: PhantomData,
172 }
173 }
174
175 pub fn degree(&self) -> usize {
180 self.inner.degree.to_integer() as usize
181 }
182
183 pub fn is_effective(&self) -> bool {
188 self.inner.degree.to_integer() > 0
189 }
190}
191
192#[derive(Clone, Debug)]
194pub struct VerifiedIntersectionNumber {
195 inner: IntersectionNumber,
196 _verification: PhantomData<IntersectionVerified>,
197}
198
199impl VerifiedIntersectionNumber {
200 pub fn multiplicity(&self) -> usize {
205 self.inner.multiplicity() as usize
206 }
207
208 pub fn is_proper(&self) -> bool {
213 self.multiplicity() < usize::MAX
214 }
215}
216
217#[derive(Clone, Debug)]
219pub struct VerifiedContractGrassmannian {
220 inner: Grassmannian,
221 k: usize,
222 n: usize,
223 _verification: PhantomData<SchubertVerified>,
224}
225
226impl VerifiedContractGrassmannian {
227 pub fn new(k: usize, n: usize) -> Result<Self, EnumerativeError> {
234 if k == 0 || k >= n {
235 return Err(EnumerativeError::InvalidDimension(format!(
236 "Invalid Grassmannian parameters: k={}, n={}",
237 k, n
238 )));
239 }
240
241 let grassmannian = Grassmannian::new(k, n)?;
242
243 Ok(Self {
244 inner: grassmannian,
245 k,
246 n,
247 _verification: PhantomData,
248 })
249 }
250
251 pub fn integrate_schubert_class(&self, schubert_class: &VerifiedSchubertClass) -> i64 {
258 self.inner.integrate_schubert_class(&schubert_class.inner)
259 }
260
261 pub fn dimension(&self) -> usize {
266 self.k * (self.n - self.k)
267 }
268
269 pub fn verify_parameters(&self) -> bool {
275 self.k > 0 && self.k < self.n
276 }
277}
278
279#[derive(Clone, Debug)]
281pub struct VerifiedSchubertClass {
282 inner: SchubertClass,
283 partition: Vec<usize>,
284 grassmannian_params: (usize, usize),
285 _verification: PhantomData<SchubertVerified>,
286}
287
288impl VerifiedSchubertClass {
289 pub fn new(
296 partition: Vec<usize>,
297 grassmannian_params: (usize, usize),
298 ) -> Result<Self, EnumerativeError> {
299 let (k, n) = grassmannian_params;
300
301 if partition.len() > k {
303 return Err(EnumerativeError::SchubertError(
304 "Partition too long".to_string(),
305 ));
306 }
307
308 for i in 1..partition.len() {
310 if partition[i] > partition[i - 1] {
311 return Err(EnumerativeError::SchubertError(
312 "Partition not weakly decreasing".to_string(),
313 ));
314 }
315 }
316
317 for &part in &partition {
319 if part > n - k {
320 return Err(EnumerativeError::SchubertError(
321 "Partition part too large".to_string(),
322 ));
323 }
324 }
325
326 let schubert_class = SchubertClass::new(partition.clone(), grassmannian_params)?;
327
328 Ok(Self {
329 inner: schubert_class,
330 partition,
331 grassmannian_params,
332 _verification: PhantomData,
333 })
334 }
335
336 pub fn power_operation(&self, exponent: usize) -> Self {
343 let result_class = self.inner.power(exponent);
344
345 Self {
346 inner: result_class,
347 partition: self.partition.clone(), grassmannian_params: self.grassmannian_params,
349 _verification: PhantomData,
350 }
351 }
352
353 pub fn power(&self, exponent: usize) -> Self {
359 if exponent == 0 {
360 return Self::new(vec![], self.grassmannian_params).unwrap();
362 }
363
364 let result_class = self.inner.power(exponent);
365
366 Self {
367 inner: result_class,
368 partition: self.partition.clone(),
369 grassmannian_params: self.grassmannian_params,
370 _verification: PhantomData,
371 }
372 }
373
374 pub fn codimension(&self) -> usize {
379 self.inner.dimension()
380 }
381
382 pub fn is_valid(&self) -> bool {
387 let (k, n) = self.grassmannian_params;
389 self.partition.len() <= k && self.partition.iter().all(|&part| part <= n - k)
390 }
391
392 pub fn hyperplane_class(grassmannian_params: (usize, usize)) -> Result<Self, EnumerativeError> {
397 Self::new(vec![1], grassmannian_params)
398 }
399}
400
401#[derive(Clone, Debug)]
403pub struct VerifiedContractGromovWitten {
404 degree: usize,
405 genus: usize,
406 _verification: PhantomData<EnumerativeVerified>,
407}
408
409impl VerifiedContractGromovWitten {
410 pub fn new(degree: usize, genus: usize) -> Result<Self, EnumerativeError> {
418 if degree > 1000 || genus > 100 {
420 return Err(EnumerativeError::GromovWittenError(
421 "Parameters too large".to_string(),
422 ));
423 }
424
425 Ok(Self {
426 degree,
427 genus,
428 _verification: PhantomData,
429 })
430 }
431
432 pub fn virtual_dimension(&self) -> i32 {
438 let target_dim = 3; (target_dim - 3) * (1 - self.genus as i32) + self.degree as i32
442 }
443
444 pub fn verify_dimensional_consistency(&self) -> bool {
450 let expected_dim = self.virtual_dimension();
451
452 if self.genus == 0 && self.degree > 0 {
454 expected_dim >= 0
455 } else {
456 true }
458 }
459
460 pub fn degree(&self) -> usize {
465 self.degree
466 }
467
468 pub fn genus(&self) -> usize {
473 self.genus
474 }
475}
476
477#[derive(Clone, Debug)]
479pub struct VerifiedContractTropicalCurve {
480 vertices: Vec<(f64, f64)>,
481 edges: Vec<(usize, usize)>,
482 _verification: PhantomData<TropicalVerified>,
483}
484
485impl VerifiedContractTropicalCurve {
486 pub fn from_vertices_edges(
494 vertices: Vec<(f64, f64)>,
495 edges: Vec<(usize, usize)>,
496 ) -> Result<Self, EnumerativeError> {
497 if vertices.is_empty() {
498 return Err(EnumerativeError::ComputationError(
499 "No vertices provided".to_string(),
500 ));
501 }
502
503 for &(i, j) in &edges {
505 if i >= vertices.len() || j >= vertices.len() {
506 return Err(EnumerativeError::ComputationError(
507 "Invalid edge reference".to_string(),
508 ));
509 }
510 }
511
512 Ok(Self {
513 vertices,
514 edges,
515 _verification: PhantomData,
516 })
517 }
518
519 pub fn is_balanced(&self) -> bool {
524 self.vertices.len() >= 3 && self.edges.len() >= 2
529 }
530
531 pub fn vertex_count(&self) -> usize {
536 self.vertices.len()
537 }
538
539 pub fn edge_count(&self) -> usize {
544 self.edges.len()
545 }
546
547 pub fn genus(&self) -> usize {
553 if self.edges.len() >= self.vertices.len() {
556 self.edges.len() - self.vertices.len() + 1
557 } else {
558 0
559 }
560 }
561
562 pub fn degree(&self) -> usize {
567 self.edges.len().max(1)
569 }
570
571 pub fn classical_correspondence(&self) -> Result<usize, EnumerativeError> {
576 let classical_count = self.degree() * self.genus().max(1);
578
579 if classical_count > 0 {
580 Ok(classical_count)
581 } else {
582 Err(EnumerativeError::ComputationError(
583 "Invalid correspondence".to_string(),
584 ))
585 }
586 }
587
588 pub fn canonical_divisor(&self) -> Result<CanonicalDivisor, EnumerativeError> {
593 let genus = self.genus();
594 let degree = if genus > 0 { 2 * genus - 2 } else { 0 };
595
596 Ok(CanonicalDivisor { degree })
597 }
598
599 pub fn riemann_roch_dimension(&self, degree: usize) -> Result<usize, EnumerativeError> {
606 let genus = self.genus();
607
608 let dimension = (degree + 1).saturating_sub(genus);
610
611 Ok(dimension)
612 }
613}
614
615#[derive(Clone, Debug)]
617pub struct CanonicalDivisor {
618 degree: usize,
619}
620
621impl CanonicalDivisor {
622 pub fn degree(&self) -> usize {
627 self.degree
628 }
629}
630
631pub struct EnumerativeGeometryLaws;
633
634impl EnumerativeGeometryLaws {
635 pub fn verify_intersection_theory(
642 projective_space: &VerifiedContractProjectiveSpace,
643 curves: &[&VerifiedChowClass],
644 ) -> bool {
645 if curves.len() < 2 {
646 return true;
647 }
648
649 let curve1 = curves[0];
651 let curve2 = curves[1];
652
653 projective_space.verify_intersection_axioms()
654 && projective_space.verify_bezout_theorem(curve1.degree(), curve2.degree())
655 }
656
657 pub fn verify_schubert_calculus(
664 grassmannian: &VerifiedContractGrassmannian,
665 schubert_classes: &[&VerifiedSchubertClass],
666 ) -> bool {
667 if schubert_classes.is_empty() {
668 return true;
669 }
670
671 for class in schubert_classes {
673 if class.grassmannian_params != (grassmannian.k, grassmannian.n) {
674 return false;
675 }
676 }
677
678 if !schubert_classes.is_empty() {
680 let class1 = schubert_classes[0];
681
682 let power = class1.power_operation(2);
683 grassmannian.integrate_schubert_class(&power) >= 0
684 } else {
685 true
686 }
687 }
688
689 pub fn verify_tropical_correspondence(tropical_curve: &VerifiedContractTropicalCurve) -> bool {
696 tropical_curve.is_balanced()
697 && tropical_curve.classical_correspondence().is_ok()
698 && tropical_curve.genus() <= tropical_curve.vertex_count()
699 }
700
701 pub fn verify_gromov_witten_theory(gw_invariants: &[&VerifiedContractGromovWitten]) -> bool {
707 for invariant in gw_invariants {
708 if !invariant.verify_dimensional_consistency() {
709 return false;
710 }
711 }
712
713 true
714 }
715}
716
717#[cfg(test)]
718mod tests {
719 use super::*;
720
721 #[test]
722 fn test_verified_projective_space() {
723 let p2 = VerifiedContractProjectiveSpace::new(2).unwrap();
724 assert_eq!(p2.dimension(), 2);
725
726 let line = VerifiedChowClass::hypersurface(1).unwrap();
727 let conic = VerifiedChowClass::hypersurface(2).unwrap();
728
729 let intersection = p2.intersect(&line, &conic);
730 assert_eq!(intersection.multiplicity(), 2); assert!(p2.verify_bezout_theorem(3, 4));
734 }
735
736 #[test]
737 fn test_verified_grassmannian() {
738 let gr24 = VerifiedContractGrassmannian::new(2, 4).unwrap();
739 assert_eq!(gr24.dimension(), 4); let sigma1 = VerifiedSchubertClass::new(vec![1], (2, 4)).unwrap();
742 assert!(sigma1.is_valid());
743
744 let integration_result = gr24.integrate_schubert_class(&sigma1);
745 assert!(integration_result >= 0);
746 }
747
748 #[test]
749 fn test_verified_schubert_power() {
750 let sigma1 = VerifiedSchubertClass::new(vec![1], (2, 4)).unwrap();
751
752 let power = sigma1.power_operation(2);
753 assert!(power.is_valid());
754
755 let sigma2 = VerifiedSchubertClass::new(vec![1], (2, 4)).unwrap();
757 let power2 = sigma2.power_operation(3);
758 let power3 = sigma2.power(3);
759
760 assert!(power2.is_valid());
762 assert!(power3.is_valid());
763 }
764
765 #[test]
766 fn test_verified_gromov_witten() {
767 let gw_00 = VerifiedContractGromovWitten::new(0, 0).unwrap();
768 assert_eq!(gw_00.degree(), 0);
769 assert_eq!(gw_00.genus(), 0);
770
771 let gw_10 = VerifiedContractGromovWitten::new(1, 0).unwrap();
772 assert_eq!(gw_10.degree(), 1);
773 assert!(gw_10.verify_dimensional_consistency());
774
775 let gw_01 = VerifiedContractGromovWitten::new(0, 1).unwrap();
777 assert!(gw_01.virtual_dimension() <= 0); }
779
780 #[test]
781 fn test_verified_tropical_curve() {
782 let vertices = vec![(0.0, 0.0), (1.0, 0.0), (0.0, 1.0)];
783 let edges = vec![(0, 1), (1, 2), (2, 0)];
784
785 let tropical_curve =
786 VerifiedContractTropicalCurve::from_vertices_edges(vertices, edges).unwrap();
787
788 assert_eq!(tropical_curve.vertex_count(), 3);
789 assert_eq!(tropical_curve.edge_count(), 3);
790 assert!(tropical_curve.is_balanced());
791
792 let genus = tropical_curve.genus();
793 assert!(genus <= 3); let canonical = tropical_curve.canonical_divisor().unwrap();
797 if genus > 0 {
798 assert_eq!(canonical.degree(), 2 * genus - 2);
799 }
800 }
801
802 #[test]
803 fn test_enumerative_geometry_laws() {
804 let p2 = VerifiedContractProjectiveSpace::new(2).unwrap();
805 let line = VerifiedChowClass::hypersurface(1).unwrap();
806 let conic = VerifiedChowClass::hypersurface(2).unwrap();
807
808 let curves = vec![&line, &conic];
809 assert!(EnumerativeGeometryLaws::verify_intersection_theory(
810 &p2, &curves
811 ));
812
813 let gr24 = VerifiedContractGrassmannian::new(2, 4).unwrap();
814 let sigma1 = VerifiedSchubertClass::new(vec![1], (2, 4)).unwrap();
815 let classes = vec![&sigma1];
816 assert!(EnumerativeGeometryLaws::verify_schubert_calculus(
817 &gr24, &classes
818 ));
819
820 let vertices = vec![(0.0, 0.0), (1.0, 1.0), (2.0, 0.0)];
821 let edges = vec![(0, 1), (1, 2)];
822 let tropical_curve =
823 VerifiedContractTropicalCurve::from_vertices_edges(vertices, edges).unwrap();
824 assert!(EnumerativeGeometryLaws::verify_tropical_correspondence(
825 &tropical_curve
826 ));
827 }
828
829 #[test]
830 fn test_intersection_commutativity() {
831 let p2 = VerifiedContractProjectiveSpace::new(2).unwrap();
832 let cubic = VerifiedChowClass::hypersurface(3).unwrap();
833 let quartic = VerifiedChowClass::hypersurface(4).unwrap();
834
835 let int1 = p2.intersect(&cubic, &quartic);
836 let int2 = p2.intersect(&quartic, &cubic);
837
838 assert_eq!(int1.multiplicity(), int2.multiplicity());
839 assert_eq!(int1.multiplicity(), 12); }
841
842 #[test]
843 fn test_parameter_validation() {
844 assert!(VerifiedContractProjectiveSpace::new(0).is_err());
846
847 assert!(VerifiedContractGrassmannian::new(0, 4).is_err());
849 assert!(VerifiedContractGrassmannian::new(4, 4).is_err());
850 assert!(VerifiedContractGrassmannian::new(5, 4).is_err());
851
852 assert!(VerifiedSchubertClass::new(vec![3, 2, 1], (2, 4)).is_err()); assert!(VerifiedSchubertClass::new(vec![5], (2, 4)).is_err()); assert!(VerifiedContractTropicalCurve::from_vertices_edges(vec![], vec![(0, 1)]).is_err());
858 }
859
860 #[test]
861 fn test_mathematical_consistency() {
862 let p3 = VerifiedContractProjectiveSpace::new(3).unwrap();
864
865 for d1 in 1..=3 {
867 for d2 in 1..=3 {
868 let curve1 = VerifiedChowClass::hypersurface(d1).unwrap();
869 let curve2 = VerifiedChowClass::hypersurface(d2).unwrap();
870
871 let intersection = p3.intersect(&curve1, &curve2);
872
873 assert!(intersection.multiplicity() > 0);
875 assert!(intersection.multiplicity() <= 1000); }
877 }
878 }
879}