pub struct CsrMatrixSetView<'a, T> { /* private fields */ }Expand description
An immutable view of a CSR matrix set for efficient read-only access.
This structure provides zero-cost abstraction access to multiple CSR matrices stored in a compact, consolidated format. It’s designed for scenarios where you need to read or process multiple sparse matrices without the overhead of copying data or creating separate matrix objects.
§Use Cases
Views are particularly useful for:
§Parallel Processing
use algebra_sparse::CsrMatrixSet;
let mut set = CsrMatrixSet::default();
// Add some matrices to the set
{
let mut builder = set.new_matrix(3, 1e-10);
builder.new_row().push(0, 1.0);
}
{
let mut builder = set.new_matrix(2, 1e-10);
builder.new_row().push(1, 2.0);
}
let view = set.as_view();
assert_eq!(view.len(),2);
let (left, right) = view.split_at(view.len() / 2);
assert_eq!(left.len(),1);
assert_eq!(right.len(),1);Implementations§
Source§impl<'a, T> CsrMatrixSetView<'a, T>
impl<'a, T> CsrMatrixSetView<'a, T>
Sourcepub fn get(self, index: usize) -> CsrMatrixView<'a, T>
pub fn get(self, index: usize) -> CsrMatrixView<'a, T>
Sourcepub fn split_at(self, index: usize) -> (Self, Self)
pub fn split_at(self, index: usize) -> (Self, Self)
Splits the matrix set view into two at the given index.
This is a zero-cost operation that creates two independent views that reference the same underlying data but represent disjoint subsets of the matrices. The operation is O(1) and involves no copying or allocation of matrix data.
§Arguments
index- The split position. The left view will contain matrices at indices[0, index), and the right view will contain matrices at indices[index, len).
§Returns
A tuple of two views: (left, right) where:
leftcontains matrices0..indexrightcontains matricesindex..len
§Panics
Panics if index > len(). Splitting at index = 0 or index = len() is allowed
and will return an empty view on one side.
§Examples
use algebra_sparse::CsrMatrixSet;
let mut set = CsrMatrixSet::default();
// Add 3 matrices to the set
{
let mut builder = set.new_matrix(2, 1e-10);
builder.new_row().push(0, 1.0);
}
{
let mut builder = set.new_matrix(2, 1e-10);
builder.new_row().push(1, 2.0);
}
{
let mut builder = set.new_matrix(2, 1e-10);
builder.new_row().push(0, 3.0);
}
let view = set.as_view();
// Split in the middle
let (left, right) = view.split_at(1);
assert_eq!(left.len(), 1); // matrices 0
assert_eq!(right.len(), 2); // matrices 1, 2
// Split at the beginning
let (empty, all) = view.split_at(0);
assert!(empty.is_empty());
assert_eq!(all.len(), 3);
// Split at the end
let (all, empty) = view.split_at(3);
assert_eq!(all.len(), 3);
assert!(empty.is_empty());§Parallel Processing
This method is particularly useful for parallel processing:
let view = set.as_view();
let midpoint = view.len() / 2;
let (left, right) = view.split_at(midpoint);
// Process halves independently (parallel processing example)
// This is conceptual - actual parallel processing would use rayon or similar§Memory Efficiency
Both resulting views share references to the same underlying data:
- No matrix data is copied during the split
- Both views have independent lifetimes
Trait Implementations§
Source§impl<'a, T: Clone> Clone for CsrMatrixSetView<'a, T>
impl<'a, T: Clone> Clone for CsrMatrixSetView<'a, T>
Source§fn clone(&self) -> CsrMatrixSetView<'a, T>
fn clone(&self) -> CsrMatrixSetView<'a, T>
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source. Read moreimpl<'a, T: Copy> Copy for CsrMatrixSetView<'a, T>
Auto Trait Implementations§
impl<'a, T> Freeze for CsrMatrixSetView<'a, T>
impl<'a, T> RefUnwindSafe for CsrMatrixSetView<'a, T>where
T: RefUnwindSafe,
impl<'a, T> Send for CsrMatrixSetView<'a, T>where
T: Sync,
impl<'a, T> Sync for CsrMatrixSetView<'a, T>where
T: Sync,
impl<'a, T> Unpin for CsrMatrixSetView<'a, T>
impl<'a, T> UnwindSafe for CsrMatrixSetView<'a, T>where
T: RefUnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self to the equivalent element of its superset.