[][src]Struct alga::general::Additive

pub struct Additive;

The addition operator, commonly symbolized by +.

Trait Implementations

impl AbstractMagma<Additive> for u8[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for u16[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for u32[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for u64[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for usize[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for i8[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for i16[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for i32[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for i64[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for isize[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for f32[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl AbstractMagma<Additive> for f64[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N: AbstractMagma<Additive>> AbstractMagma<Additive> for Complex<N>[src]

fn op(&self, _: O, lhs: &Self) -> Self[src]

Performs specific operation.

impl<N> AbstractQuasigroup<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl AbstractQuasigroup<Additive> for i8[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl AbstractQuasigroup<Additive> for i16[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl AbstractQuasigroup<Additive> for i32[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl AbstractQuasigroup<Additive> for i64[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl AbstractQuasigroup<Additive> for isize[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl AbstractQuasigroup<Additive> for f32[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl AbstractQuasigroup<Additive> for f64[src]

fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if latin squareness holds for the given arguments. Read more

impl AbstractSemigroup<Additive> for u8[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for u16[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for u32[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for u64[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for usize[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N> AbstractSemigroup<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for i8[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for i16[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for i32[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for i64[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for isize[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for f32[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl AbstractSemigroup<Additive> for f64[src]

fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if associativity holds for the given arguments.

impl<N> AbstractLoop<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

impl AbstractLoop<Additive> for i8[src]

impl AbstractLoop<Additive> for i16[src]

impl AbstractLoop<Additive> for i32[src]

impl AbstractLoop<Additive> for i64[src]

impl AbstractLoop<Additive> for isize[src]

impl AbstractLoop<Additive> for f32[src]

impl AbstractLoop<Additive> for f64[src]

impl AbstractMonoid<Additive> for u8[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for u16[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for u32[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for u64[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for usize[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N> AbstractMonoid<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for i8[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for i16[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for i32[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for i64[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for isize[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for f32[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl AbstractMonoid<Additive> for f64[src]

fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq
[src]

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N> AbstractGroup<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

impl AbstractGroup<Additive> for i8[src]

impl AbstractGroup<Additive> for i16[src]

impl AbstractGroup<Additive> for i32[src]

impl AbstractGroup<Additive> for i64[src]

impl AbstractGroup<Additive> for isize[src]

impl AbstractGroup<Additive> for f32[src]

impl AbstractGroup<Additive> for f64[src]

impl<N> AbstractGroupAbelian<Additive> for Complex<N> where
    N: AbstractGroupAbelian<Additive>, 
[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl AbstractGroupAbelian<Additive> for i8[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl AbstractGroupAbelian<Additive> for i16[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl AbstractGroupAbelian<Additive> for i32[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl AbstractGroupAbelian<Additive> for i64[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl AbstractGroupAbelian<Additive> for isize[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl AbstractGroupAbelian<Additive> for f32[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl AbstractGroupAbelian<Additive> for f64[src]

fn prop_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the operator is commutative for the given argument tuple.

impl AbstractRing<Additive, Multiplicative> for i8[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl AbstractRing<Additive, Multiplicative> for i16[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl AbstractRing<Additive, Multiplicative> for i32[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl AbstractRing<Additive, Multiplicative> for i64[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl AbstractRing<Additive, Multiplicative> for isize[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl AbstractRing<Additive, Multiplicative> for f32[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl AbstractRing<Additive, Multiplicative> for f64[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl<N: Num + Clone + ClosedNeg + AbstractRing> AbstractRing<Additive, Multiplicative> for Complex<N>[src]

fn prop_mul_and_add_are_distributive_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_and_add_are_distributive(args: (Self, Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication and addition operators are distributive for the given argument tuple. Read more

impl AbstractRingCommutative<Additive, Multiplicative> for i8[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl AbstractRingCommutative<Additive, Multiplicative> for i16[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl AbstractRingCommutative<Additive, Multiplicative> for i32[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl AbstractRingCommutative<Additive, Multiplicative> for i64[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl AbstractRingCommutative<Additive, Multiplicative> for isize[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl AbstractRingCommutative<Additive, Multiplicative> for f32[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl AbstractRingCommutative<Additive, Multiplicative> for f64[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl<N: Num + Clone + ClosedNeg + AbstractRingCommutative> AbstractRingCommutative<Additive, Multiplicative> for Complex<N>[src]

fn prop_mul_is_commutative_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple. Approximate equality is used for verifications. Read more

fn prop_mul_is_commutative(args: (Self, Self)) -> bool where
    Self: Eq
[src]

Returns true if the multiplication operator is commutative for the given argument tuple.

impl AbstractField<Additive, Multiplicative> for f32[src]

impl AbstractField<Additive, Multiplicative> for f64[src]

impl<N: Num + Clone + ClosedNeg + AbstractField> AbstractField<Additive, Multiplicative> for Complex<N>[src]

impl Identity<Additive> for u8[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for u16[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for u32[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for u64[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for usize[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for i8[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for i16[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for i32[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for i64[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for isize[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for f32[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Identity<Additive> for f64[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl<N: Identity<Additive>> Identity<Additive> for Complex<N>[src]

fn id(_: O) -> Self where
    Self: Sized
[src]

Specific identity.

impl Operator for Additive[src]

impl TwoSidedInverse<Additive> for i8[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl TwoSidedInverse<Additive> for i16[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl TwoSidedInverse<Additive> for i32[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl TwoSidedInverse<Additive> for i64[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl TwoSidedInverse<Additive> for isize[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl TwoSidedInverse<Additive> for f32[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl TwoSidedInverse<Additive> for f64[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl<N: TwoSidedInverse<Additive>> TwoSidedInverse<Additive> for Complex<N>[src]

fn two_sided_inverse_mut(&mut self)[src]

In-place inversion of self, relative to the operator O. Read more

impl Clone for Additive[src]

fn clone_from(&mut self, source: &Self)
1.0.0
[src]

Performs copy-assignment from source. Read more

impl Copy for Additive[src]

Auto Trait Implementations

impl Send for Additive

impl Sync for Additive

Blanket Implementations

impl<T, U> Into for T where
    U: From<T>, 
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

impl<T> From for T[src]

impl<T, U> TryFrom for T where
    U: Into<T>, 
[src]

type Error = !

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> Borrow for T where
    T: ?Sized
[src]

impl<T, U> TryInto for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

🔬 This is a nightly-only experimental API. (try_from)

The type returned in the event of a conversion error.

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> BorrowMut for T where
    T: ?Sized
[src]