MathieuWorkspace

Struct MathieuWorkspace 

Source
pub struct MathieuWorkspace { /* private fields */ }
Expand description

The Mathieu functions can be computed for a single order or for multiple orders, using array-based routines. The array-based routines require a preallocated workspace.

Implementations§

Source§

impl MathieuWorkspace

Source

pub fn new(n: usize, qmax: f64) -> Option<MathieuWorkspace>

This function returns a workspace for the array versions of the Mathieu routines. The arguments n and qmax specify the maximum order and q-value of Mathieu functions which can be computed with this workspace.

Source

pub fn mathieu_a(n: i32, q: f64) -> Result<Result, Value>

This routine computes the characteristic values a_n(q), b_n(q) of the Mathieu functions ce_n(q,x) and se_n(q,x), respectively.

Source

pub fn mathieu_b(n: i32, q: f64) -> Result<Result, Value>

This routine computes the characteristic values a_n(q), b_n(q) of the Mathieu functions ce_n(q,x) and se_n(q,x), respectively.

Source

pub fn mathieu_a_array( &mut self, order_min: i32, order_max: i32, q: f64, result_array: &mut [f64], ) -> Result<(), Value>

This routine computes a series of Mathieu characteristic values a_n(q), b_n(q) for n from order_min to order_max inclusive, storing the results in the array result_array.

Source

pub fn mathieu_b_array( &mut self, order_min: i32, order_max: i32, q: f64, result_array: &mut [f64], ) -> Result<(), Value>

This routine computes a series of Mathieu characteristic values a_n(q), b_n(q) for n from order_min to order_max inclusive, storing the results in the array result_array.

Source

pub fn mathieu_ce(n: i32, q: f64, x: f64) -> Result<Result, Value>

This routine computes the angular Mathieu functions ce_n(q,x) and se_n(q,x), respectively.

Source

pub fn mathieu_se(n: i32, q: f64, x: f64) -> Result<Result, Value>

This routine computes the angular Mathieu functions ce_n(q,x) and se_n(q,x), respectively.

Source

pub fn mathieu_ce_array( &mut self, nmin: i32, nmax: i32, q: f64, x: f64, result_array: &mut [f64], ) -> Result<(), Value>

This routine computes a series of the angular Mathieu functions ce_n(q,x) and se_n(q,x) of order n from nmin to nmax inclusive, storing the results in the array result_array.

Source

pub fn mathieu_se_array( &mut self, nmin: i32, nmax: i32, q: f64, x: f64, result_array: &mut [f64], ) -> Result<(), Value>

This routine computes a series of the angular Mathieu functions ce_n(q,x) and se_n(q,x) of order n from nmin to nmax inclusive, storing the results in the array result_array.

Source

pub fn mathieu_Mc(j: i32, n: i32, q: f64, x: f64) -> Result<Result, Value>

This routine computes the radial j-th kind Mathieu functions Mc_n^{(j)}(q,x) and Ms_n^{(j)}(q,x) of order n.

The allowed values of j are 1 and 2. The functions for j = 3,4 can be computed as M_n^{(3)} = M_n^{(1)} + iM_n^{(2)} and M_n^{(4)} = M_n^{(1)} - iM_n^{(2)}, where M_n^{(j)} = Mc_n^{(j)} or Ms_n^{(j)}.

Source

pub fn mathieu_Ms(j: i32, n: i32, q: f64, x: f64) -> Result<Result, Value>

This routine computes the radial j-th kind Mathieu functions Mc_n^{(j)}(q,x) and Ms_n^{(j)}(q,x) of order n.

The allowed values of j are 1 and 2. The functions for j = 3,4 can be computed as M_n^{(3)} = M_n^{(1)} + iM_n^{(2)} and M_n^{(4)} = M_n^{(1)} - iM_n^{(2)}, where M_n^{(j)} = Mc_n^{(j)} or Ms_n^{(j)}.

Source

pub fn mathieu_Mc_array( &mut self, j: i32, nmin: i32, nmax: i32, q: f64, x: f64, result_array: &mut [f64], ) -> Result<(), Value>

This routine computes a series of the radial Mathieu functions of kind j, with order from nmin to nmax inclusive, storing the results in the array result_array.

Source

pub fn mathieu_Ms_array( &mut self, j: i32, nmin: i32, nmax: i32, q: f64, x: f64, result_array: &mut [f64], ) -> Result<(), Value>

This routine computes a series of the radial Mathieu functions of kind j, with order from nmin to nmax inclusive, storing the results in the array result_array.

Trait Implementations§

Source§

impl Drop for MathieuWorkspace

Source§

fn drop(&mut self)

Executes the destructor for this type. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.