1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
//! Description of generic tensor types. All tensors are immutable!
//! Mutability is allowed only for calculating gradients and optimizer parameters.
//!
//! There are two tensor types:
//! > 1. [Variable] - stores datatype and also it's gradient, passed around by reference
//! > 2. [Tensor] - stores datatype and functions necessary to calculate gradient of [Variable], passed around by cloning
//!
//! Buffer and [Variable] are leaf tensors. [Tensor] is strictly non-leaf and therefore it doesn't store it's gradient.
//!
//! # Example
//!
//! Basic buffer
//! ```
//! # use zyx::{accel::cpu::Buffer, tensor::{Variable, Tensor}};
//! # use zyx::prelude::*;
//! let x: Buffer<_> = Buffer::cfrom([2., 1., 4.]);
//! ```
//!
//! By calling [IntoVariable::with_grad()] on any datatype, you get [Variable], which adds gradient to the buffer.
//! ```
//! # use zyx::{accel::cpu::Buffer, tensor::{Variable, Tensor}};
//! # use zyx::prelude::*;
//! # let x: Buffer<_> = Buffer::cfrom([2., 1., 4.]);
//! let y: Variable<_> = x.clone().with_grad();
//! ```
//!
//! Applying function to [Variable] returns [Tensor].
//! [Tensor] stores references to [Variable's](Variable) gradients and some data buffers used during gradient calculation.
//! ```
//! # use zyx::{accel::cpu::Buffer, tensor::{Variable, Tensor}};
//! # use zyx::prelude::*;
//! # let y: Variable<_> = Buffer::cfrom([2., 1., 4.]).with_grad();
//! let z: Tensor<_, _> = y.relu();
//! ```
//!
//! Applying function to buffer simply returns buffer.
//! ```
//! # use zyx::{accel::cpu::Buffer, tensor::{Variable, Tensor}};
//! # use zyx::prelude::*;
//! # let x: Buffer<_> = Buffer::cfrom([2., 1., 4.]);
//! let z: Buffer<_> = x.relu();
//! ```
//!
// This file contains tensor definitions, getters and setters for tensors.
mod ops;
use crate::{ops::GetShape, module::Parameters};
// How this works (for contributors)
//
// The Buffer and Variable are leaf tensors. Buffer does not have grad, while Variable does (obviously).
// Tensor is non leaf tensor.
// When an operation is performed with Buffer, a new Buffer is returned with result. Nothing magical happens.
// When an operation is performed with Variable, a new Tensor is returned that holds weak pointer
// to Variable's gradient. This Tensor contains a closure, that hold's this pointer and calculates
// the gradient when backward is called on it.
// We can imagine neural network as a tree, where leafs are Buffers and Variables and root/roots
// are Tensor. When an operation is performed with Tensor, it's consumed and it's func is moved to the resulting
// Tensor. So the last Tensor is the root of the tree and is the only Tensor in existence
// and it holds all the closures with &RefCell<S> pointers to the Variable's gradients.
// If you want to have more the one Tensor to call .backward() on, you need to clone this Tensor
// or any of the intermediate Tensors. In this case, the library performs cloning of the closures.
// Tensors are moved into operations, while Variables are passed by reference!
/// # Variable
///
/// Variable holds data and it's gradient.
#[derive(Debug, Clone, Default)]
pub struct Variable<S> {
data: S,
// Gradient has the same type and shape as data
grad: Gradient<S>,
}
/// Gradient of [Variable]
///
/// User has read-only access to [Gradient] with to_vec and to_string.
// This is using UnsafeCell to store value inside gradient.
// Since UnsafeCell is not Sync, there is just few times that we access gradient,
// so it is not difficult to make it safe to use.
// The only mutable accesses are [Self::zero], which does not use unsafe
// and accumulate, which uses unsafe, since [Variable] can be passed into multiple
// functions and all of them need to be able to accumulate gradient.
// So we just make sure that backward can not be called on buffer that is borrowed
// and that is it.
#[derive(Default, Debug)]
pub struct Gradient<S>(core::cell::UnsafeCell<Option<S>>);
impl<S> Clone for Gradient<S>
where
S: Clone,
{
fn clone(&self) -> Self {
// Safe, read only access
unsafe { Self(core::cell::UnsafeCell::new((*self.0.get()).clone())) }
}
}
impl<S> Gradient<S> {
fn new() -> Self {
Self(core::cell::UnsafeCell::new(None))
}
/// Get value stored inside of the gradient
pub fn value(&self) -> &Option<S> {
unsafe { &*self.0.get() }
}
fn zero(&mut self) {
*self.0.get_mut() = None;
}
}
trait GradAcc<G>: core::ops::Add<G, Output = Self> + crate::ops::Zeros {}
impl<G, T> GradAcc<G> for T where T: core::ops::Add<G, Output = Self> + crate::ops::Zeros {}
#[derive(Debug, Clone, Copy)]
struct GradientRef<'g, S>(&'g Gradient<S>);
impl<'g, S> GradientRef<'g, S> {
fn new(gradient: &'g Gradient<S>) -> Self {
Self(gradient)
}
fn accumulate<G>(&self, value: G)
where
S: GradAcc<G>,
{
// Accumulate is called by backward function to accumulate gradients. This is needed in batch processing.
// Unsafe is needed, because we need multiple functions accessing the same gradient.
let mut x = None;
unsafe { core::ptr::swap(self.0.0.get(), &mut x); }
let grad = Some(match x {
Some(grad) => grad + value,
None => S::zeros(1) + value,
});
unsafe { *self.0.0.get() = grad; }
}
}
impl<S, Rhs> PartialEq<Rhs> for Gradient<S>
where
S: PartialEq<Rhs>,
{
fn eq(&self, rhs: &Rhs) -> bool {
if let Some(grad) = unsafe { &*self.0.get() } {
grad == rhs
} else {
false
}
}
}
impl<G> core::fmt::Display for Gradient<G>
where
G: core::fmt::Display,
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
extern crate alloc;
use alloc::string::ToString;
// This is save, beacause it is read only access
let grad = unsafe { &*self.0.get() };
let s = if grad.is_some() {
grad.as_ref().unwrap().to_string()
} else {
"None".into()
};
f.write_str(&s)
}
}
/// # Tensor
///
/// Tensor holds data and grad_fn to calculate gradients of [Variables](Variable).
/// Tensor is only created as a result of some operations on at least one [Variable].
/// Tensor does not store it's gradient, but the gradient can be accessed during backward
/// pass by using [GradHookT].
#[derive(Debug, Clone, Default, PartialEq, Eq, PartialOrd, Ord)]
pub struct Tensor<S, GradFn> {
data: S,
grad_fn: GradFn,
}
/// # Display Variable
///
/// Shows [Variable] and it's gradient.
impl<S> core::fmt::Display for Variable<S>
where
S: core::fmt::Display,
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
extern crate alloc;
use alloc::format;
f.write_str(&format!(
"{} with grad:\n{}",
self.data,
&self.grad,
))
}
}
/// # Display Tensor
///
/// Shows [Tensor] and it's grad_fn.
impl<S, GradFn> core::fmt::Display for Tensor<S, GradFn>
where
S: core::fmt::Display,
GradFn: core::fmt::Debug,
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
// TODO: this is ugly solution, please just print the name of the function, don't require GradFn debug
// and creating debug string of all the buffers stored in grad_fn
extern crate alloc;
use alloc::format;
f.write_str(&format!("{} with grad_fn: {}", self.data, format!("{:?}", self.grad_fn).split_once(" {").unwrap().0))
}
}
impl<S> Variable<S> {
/// # Variable backward
///
/// Calls backward function on [Variable].
/// This results in [Variable's](Variable) gradient being increased by one.
/// We take [Variable] with mutable reference, so that we have exclusive access during mutation of gradient.
///
/// ```txt
/// x.grad += 1;
/// ```
///
/// # Example
///
/// ```
/// use zyx::prelude::*;
/// let mut x = 3.with_grad();
/// x.backward();
/// assert_eq!(x.grad(), &1);
/// ```
/// And gradient gets accumulated if we call backward again.
/// ```
/// # use zyx::prelude::*;
/// # let mut x = 3.with_grad();
/// # x.backward();
/// x.backward();
/// assert_eq!(x.grad(), &2);
/// ```
pub fn backward(&mut self)
where
S: core::ops::Add<i32, Output = S> + crate::ops::Zeros,
{
GradientRef(&self.grad).accumulate(1);
}
}
/// # Backward trait
///
/// This trait is implemented by all functions that allow us to calculate gradients.
pub trait Backward<S> {
/// Calls backward on a grad_fn, passing calculated output's gradient as parameter.
fn backward(self, res_grad: S);
}
impl<S, F> Tensor<S, F>
where
S: crate::ops::Ones + GetShape,
F: Backward<S>,
{
/// # Tensor backward
///
/// Calls backward function on [Tensor].
/// Computes gradient of all [Variables](Variable) that were used as inputs to operations that resulted in creation of this [Tensor].
/// This function accumulates gradients in those [Variables](Variable). If you want to clear [Variable's](Variable) gradients, call [Parameters::zero_grad()] on that [Variable].
///
/// # Example
/// ```
/// # use zyx::prelude::*;
/// # use zyx::accel::cpu;
/// let x = cpu::Buffer::cfrom([2., 3., 1.]).with_grad();
/// let y = x.exp();
/// ```
/// y is now [Tensor], so we can call backward on it.
/// ```
/// # use zyx::prelude::*;
/// # use zyx::accel::cpu;
/// # let x = cpu::Buffer::cfrom([2., 3., 1.]).with_grad();
/// # let y = x.exp();
/// y.backward();
/// ```
/// and the gradient of [Variable] x will now get populated:
/// ```
/// # use zyx::prelude::*;
/// # use zyx::accel::cpu;
/// # let x = cpu::Buffer::cfrom([2., 3., 1.]).with_grad();
/// # let y = x.exp();
/// # y.backward();
/// assert_eq!(x.grad().to_vec(), x.data().clone().exp().to_vec());
/// ```
pub fn backward(self) {
// NOTE: right now backward call is recursive.
// Shall this pose a problem, we can switch to iterative version.
let shape = self.shape();
self.grad_fn.backward(S::ones(shape));
}
}
/// Turn any datatype into [Variable].
pub trait IntoVariable {
/// Calling this function turns input into [Variable] adding gradient in the process.
fn with_grad(self) -> Variable<Self>
where
Self: Sized;
}
/// Create new [Variable] that requires gradient
impl<S> IntoVariable for S {
fn with_grad(self) -> Variable<Self> {
Variable {
data: self,
grad: Gradient::new(),
}
}
}
impl<S> Variable<S> {
/// Access [Variable's](Variable) data buffer
pub fn data(&self) -> &S {
&self.data
}
}
impl<S, GradFn> Tensor<S, GradFn> {
/// Access [Tensor's](Tensor) data buffer
pub fn data(&self) -> &S {
&self.data
}
}
impl<S> Variable<S> {
/// Access [Tensor's](Tensor) grad buffer
pub fn grad(&self) -> &Gradient<S> {
&self.grad
}
}
/*impl<S, GradFn> Tensor<S, GradFn> {
/// Access [Tensor's](Tensor) backward function
pub fn grad_fn(&self) -> &GradFn {
&self.grad_fn
}
}*/
/// Gradient hook for [Variable]
#[derive(Debug, Clone, Copy)]
pub struct GradHookV<'g, G, Hook> {
grad: GradientRef<'g, G>,
hook: Hook,
}
impl<S, G, HOOK> Backward<S> for GradHookV<'_, G, HOOK>
where
S: Clone,
G: Clone + GradAcc<S>,
HOOK: FnOnce(S),
{
fn backward(self, res_grad: S) {
(self.hook)(res_grad.clone());
self.grad.accumulate(res_grad);
}
}
impl<S> Variable<S> {
/// Add custom FnOnce closure that will receive Buffer's gradient during backward pass.
/// The hook is stored in the result, so make sure to do all operations on this result,
/// otherwise your hook will not be called.
pub fn register_hook<HOOK>(&self, hook: HOOK) -> Tensor<S, GradHookV<'_, S, HOOK>>
where
S: Clone,
HOOK: FnOnce(S), // not necessary to put this requirement here, but seems like a good idea
{
Tensor {
data: (*self.data()).clone(),
grad_fn: GradHookV {
grad: GradientRef::new(&self.grad),
hook,
},
}
}
}
/// Gradient hook for [Tensor]
#[derive(Debug, Clone, Copy)]
pub struct GradHookT<GradFn, HOOK> {
grad_fn: GradFn,
hook: HOOK,
}
impl<S, GradFn, HOOK> Backward<S> for GradHookT<GradFn, HOOK>
where
GradFn: Backward<S>,
HOOK: FnOnce(S),
S: Clone,
{
fn backward(self, res_grad: S) {
(self.hook)(res_grad.clone());
self.grad_fn.backward(res_grad);
}
}
impl<S, GradFn> Tensor<S, GradFn> {
/// Add custom FnOnce closure that will receive Buffer's gradient during backward pass
/// The hook is stored in the result, so make sure to do all operations on this result,
/// otherwise your hook will not be called.
pub fn register_hook<HOOK>(self, hook: HOOK) -> Tensor<S, GradHookT<GradFn, HOOK>>
where
HOOK: FnOnce(S), // not necessary to put this requirement here, but seems like a good idea
{
Tensor {
data: self.data,
grad_fn: GradHookT {
grad_fn: self.grad_fn,
hook,
},
}
}
}
/// Conversions between devices and types
// NOTE: you need to move the Variable into required device and type
// before using it in optimizer
impl<S, S2> crate::ops::ConvertFrom<Variable<S2>> for Variable<S>
where
S: crate::ops::ConvertFrom<S2>,
S2: Clone,
{
fn cfrom(x: Variable<S2>) -> Self {
Self {
data: S::cfrom(x.data),
grad: Gradient::new(),
}
}
}
/// Conversions between devices and types
// We usually don't want to move across devices inside the model, but we want want to implement changing dtypes,
// so here is an implementation of ConvertFrom, but keep in mind the performance implications of calling
// this function, especially if you are changing devices on the fly.
impl<S, S2, GradFn> crate::ops::ConvertFrom<Tensor<S2, GradFn>> for Tensor<S, GradFn>
where
S: crate::ops::ConvertFrom<S2>,
{
fn cfrom(x: Tensor<S2, GradFn>) -> Self {
Self {
data: S::cfrom(x.data),
grad_fn: x.grad_fn,
}
}
}
use crate::optim::Optimizer;
use core::ops::{Sub, Mul};
// Update Variable's data. It is used by optimizer.step().
impl<S> Parameters for &mut Variable<S>
where
S: Clone + Mul<f64> + Sub<<S as Mul<f64>>::Output, Output = S>,
{
fn step<Optim>(self, optim: &Optim)
where
Optim: Optimizer
{
if let Some(grad) = self.grad().value().clone() {
self.data = optim.update_data(self.data.clone(), grad);
}
// If the gradient wasn't calculated, just do nothing, or should we pass gradient of zeros?
// Does some optimizer need that?
}
fn zero_grad(&mut self) {
self.grad.zero();
}
}