1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
use crate::error::ZyxError;
use crate::utils::{get_dtype, get_shape};
use crate::{
dtype::DType,
node::Node,
scalar::Scalar,
shape::Shape,
tensor::{self, Id},
};
use alloc::collections::btree_map::Entry;
use alloc::{
collections::{BTreeMap, BTreeSet},
vec::Vec,
};
use core::ops::Range;
use rand::distributions::Uniform;
/// RuntimeBackend is a good plug in point for backend developers.
/// Use Runtime::new(YourOwnStructThatImplementsRuntimeBackend::new()) to write your
/// own backend which needs to implement only evaluation of graph.
/// Used by torch and native backends.
pub trait RuntimeBackend {
/// Is tensor x evaluated?
fn is_evaluated(&self, x: Id) -> bool;
/// Check if there are no more buffers on id x
fn is_free_id(&self, x: Id) -> bool;
/// Delete all memory used by tensor x.
fn remove(&mut self, x: Id) -> Result<(), ZyxError>;
/// Store iterator into runtime backend
fn store<T: Scalar, IT>(&mut self, x: Id, iter: IT) -> Result<(), ZyxError>
where
IT: IntoIterator<Item = T>,
IT::IntoIter: ExactSizeIterator;
/// Load evaluated tensor x.
fn load<T: Scalar>(&mut self, x: Id, numel: usize) -> Result<Vec<T>, ZyxError>;
/// Evaluate tensors to_eval with given graph of nodes and recommended
/// order of evaluation.
fn evaluate(
&mut self,
rcs: BTreeMap<Id, u32>,
order: &[Id],
nodes: &[Node],
) -> Result<(), ZyxError>;
}
/// Runtime with autograd engine.
/// This runtime uses [Node] enum as representation of tensors.
pub struct Runtime<R: RuntimeBackend> {
rng: rand::rngs::SmallRng,
rcs: Vec<u32>,
nodes: Vec<Node>,
backprop_nodes_count: usize,
runtime_backend: R,
}
impl<R: RuntimeBackend> Runtime<R> {
/// Initialize new runtime.
#[must_use]
pub fn new(runtime_backend: R) -> Self {
use rand::SeedableRng;
Self {
rng: rand::rngs::SmallRng::seed_from_u64(420_694_206_942_069),
rcs: Vec::new(),
nodes: Vec::new(),
backprop_nodes_count: 0,
runtime_backend,
}
}
/// Create tensor initialized from normal distribution.
pub fn randn(&mut self, shape: Shape, dtype: DType) -> Result<Id, ZyxError> {
use rand::Rng;
let n = shape.numel();
let mut rng = self.rng.clone();
use rand::distributions::Standard;
let data1 = match dtype {
DType::F32 => self.store::<f32, _>((0..n).map(move |_| rng.sample(Standard))),
DType::F64 => self.store::<f64, _>((0..n).map(move |_| rng.sample(Standard))),
DType::I32 => self.store::<i32, _>((0..n).map(move |_| rng.sample(Standard))),
}?;
let data = self.push(Node::Reshape(data1, shape))?;
self.release(data1)?;
// change the state of the random seed in rng
for _ in 0..n {
self.rng.sample::<f32, _>(Standard);
}
Ok(data)
}
/// Create uniform tensor from range low..high
pub fn uniform<T: Scalar>(&mut self, shape: Shape, range: Range<T>) -> Result<Id, ZyxError> {
// TODO for f32 in range 0.0..1.0 switch to Node::UniformF32 for better performance
use rand::Rng;
let n = shape.numel();
let mut rng = self.rng.clone();
use rand::distributions::Standard;
let data1 = match T::dtype() {
DType::F32 => self.store((0..n).map(move |_| {
rng.sample(Uniform::new(
range.start.clone().into_f32(),
range.end.clone().into_f32(),
))
})),
DType::F64 => self.store((0..n).map(move |_| {
rng.sample(Uniform::new(
range.start.clone().into_f64(),
range.end.clone().into_f64(),
))
})),
DType::I32 => self.store((0..n).map(move |_| {
rng.sample(Uniform::new(
range.start.clone().into_i32(),
range.end.clone().into_i32(),
))
})),
}?;
let data = self.push(Node::Reshape(data1, shape))?;
self.release(data1)?;
// change the state of the random seed in rng
for _ in 0..n {
self.rng.sample::<f32, _>(Standard);
}
Ok(data)
}
/// Get shape of tensor x
#[must_use]
pub fn shape(&self, x: Id) -> &Shape {
get_shape(self.nodes.as_slice(), x)
}
/// Get dtype of tensor x
#[must_use]
pub fn dtype(&self, x: Id) -> DType {
get_dtype(self.nodes.as_slice(), x)
}
/// Load tensor x
pub fn load<T: Scalar>(&mut self, x: Id) -> Result<Vec<T>, ZyxError> {
if !self.runtime_backend.is_evaluated(x) {
self.evaluate(BTreeSet::from([x]))?;
}
let numel = get_shape(self.nodes.as_slice(), x).numel();
//std::println!("Reading buffer with {numel} elements.");
self.runtime_backend.load(x, numel)
}
/// Store iterator into runtime as tensor
pub fn store<T: Scalar, IT>(&mut self, iter: IT) -> Result<Id, ZyxError>
where
IT: IntoIterator<Item = T>,
IT::IntoIter: ExactSizeIterator,
{
// TODO optimizations for scalars and very small tensors, by using Node::Scalar(...) or Node::SmallTensor(..)
// With those optimizations, these can be compiled into kernels for better performance.
let iter = iter.into_iter();
let len = iter.len();
let node = Node::Leaf(len.into(), T::dtype());
let id = if let Some(i) = self
.rcs
.iter()
.enumerate()
.position(|(i, rc)| *rc == 0 && self.runtime_backend.is_free_id(tensor::id(i)))
{
let id = tensor::id(i);
self.rcs[i] = 1;
self.nodes[i] = node;
id
} else {
let id = tensor::id(self.rcs.len());
self.rcs.push(1);
self.nodes.push(node);
id
};
//if id.i() == 1 { panic!("break") }
self.runtime_backend.store(id, iter)?;
//self.backprop_nodes_count += 1;
//std::println!("Storing {id}, {:?}", self.rcs);
Ok(id)
}
/// Push new Node into the graph creating new tensor.
/// This function does ZERO verification that the node is correct, but it optimizes
/// out useless operations (like reshaping to the same shape)
pub fn push(&mut self, node: Node) -> Result<Id, ZyxError> {
//std::println!("Pushing {node:?}, len: {}, rcs: {:?}", self.nodes.len(), self.rcs);
// get rid of noops :)
match node {
Node::Reshape(x, ref shape) | Node::Expand(x, ref shape) => {
if shape == self.shape(x) {
self.retain(x);
return Ok(x);
}
}
Node::Sum(x, ref axes, ..) | Node::Max(x, ref axes, ..) => {
if axes.len() == 0 {
self.retain(x);
return Ok(x);
}
}
_ => {}
}
for nid in node.parameters() {
self.retain(nid);
}
let id = if let Some(i) = self
.rcs
.iter()
.enumerate()
.position(|(i, rc)| *rc == 0 && self.runtime_backend.is_free_id(tensor::id(i)))
{
let id = tensor::id(i);
self.rcs[i] = 1;
self.nodes[i] = node;
id
} else {
let id = tensor::id(self.rcs.len());
self.rcs.push(1);
if self.rcs.len() > 4000000000 {
panic!("Maximum number of tensors has been reached. Zyx supports up to 4 billion tensors. \
Please check your code for memory leaks. If you really need to use more tensors, please raise an issue: https://github.com/zk4x/zyx");
}
self.nodes.push(node);
id
};
//std::println!("Assigned id: {id}, rcs {:?}", self.rcs);
self.backprop_nodes_count += 1;
// This regulates caching, 256 tensors per batch seems like a good default
if self.backprop_nodes_count > 256 {
self.evaluate([id].into_iter().collect::<BTreeSet<Id>>())?;
//std::println!("Num tensors: {}", self.nodes.len());
}
Ok(id)
}
/// Decrease reference count of x. If x's reference count reaches zero, this function will delete
/// x and release all of it's predecessors in the graph.
pub fn release(&mut self, x: Id) -> Result<(), ZyxError> {
//std::println!("Releasing {x}");
let mut params = Vec::with_capacity(10);
params.push(x);
while let Some(x) = params.pop() {
self.rcs[x.i()] -= 1;
//std::println!("Releasing {x} {:?}", self.rcs);
if self.rcs[x.i()] == 0 {
params.extend(self.nodes[x.i()].parameters());
if !matches!(self.nodes[x.i()], Node::Leaf(..)) {
self.backprop_nodes_count -= 1;
}
self.runtime_backend.remove(x)?;
}
}
//std::println!("After released {x} rcs {:?}", self.rcs);
Ok(())
}
/// Increase reference count of tensor x.
pub fn retain(&mut self, x: Id) {
//std::println!("Retaining {x}, rcs: {:?}", self.rcs);
//panic!();
debug_assert!(
self.rcs[x.i()] < u32::MAX,
"Reference count of tensor {x} has been exceeded,\
This is zyx bug. please report it at: https://github.com/zk4x/zyx"
);
self.rcs[x.i()] += 1;
}
/// Evaluate specified nodes.
pub fn evaluate(&mut self, nodes: BTreeSet<Id>) -> Result<(), ZyxError> {
// This whole function is needed so that we can batch ops together.
// This aleviates the cost of keeping intermediate buffers for backpropagation,
// as this function runs independently from backpropagation and if some tensors
// are dropped after backpropagation, this function optimizes those away.
// Basically the difference between immediate and lazy execution with caching.
// We simply wait to get more information about the graph structure before
// we push it to the device.
//std::println!("Evaluating {nodes:?}, rcs: {:?}", self.rcs);
// TODO in order to be more efficient, we can optimize the graph
// by reordering nodes and removing unnecessary nodes
// TODO should we decrease refcount of some other nodes to drop them from memory?
// This memory <=> performance tradeoff should be decided by the user, with some setting.
// TODO simplify this function if possible
// Creation of graph (DFS) runs in linear time, max once per node in self.nodes.
// Make a list of visited nodes and their reference counts.
let mut temp_rcs: BTreeMap<Id, u32> = BTreeMap::new();
let mut params: Vec<Id> = nodes.iter().copied().collect();
params.reserve(100);
while let Some(nid) = params.pop() {
//std::println!("{nid} is evaluated: {}", self.runtime_backend.is_evaluated(nid));
if !self.runtime_backend.is_evaluated(nid) {
temp_rcs
.entry(nid)
.and_modify(|rc| *rc += 1)
.or_insert_with(|| {
params.extend(self.nodes[nid.i()].parameters());
1
});
}
}
// Order them using rcs reference counts.
let mut order = Vec::new();
let mut rcs: BTreeMap<Id, u32> = BTreeMap::new();
let mut params: Vec<Id> = nodes.iter().copied().collect();
params.reserve(100);
while let Some(nid) = params.pop() {
if let Some(temp_rc) = temp_rcs.get(&nid) {
let rc = rcs.entry(nid).and_modify(|rc| *rc += 1).or_insert(1);
if *temp_rc == *rc {
order.push(nid);
params.extend(self.nodes[nid.i()].parameters());
}
}
}
order.reverse();
// Just create another DFS that goes all the way to Node::Leaf and adds branches to drop_nodes
// if needed.
let mut drop_nodes = BTreeSet::new();
let mut temp_rcs: BTreeMap<Id, u32> = BTreeMap::new();
let mut params: Vec<Id> = nodes.iter().copied().collect();
params.reserve(100);
while let Some(nid) = params.pop() {
if !matches!(self.nodes[nid.i()], Node::Leaf(..)) {
temp_rcs
.entry(nid)
.and_modify(|rc| *rc += 1)
.or_insert_with(|| {
params.extend(self.nodes[nid.i()].parameters());
1
});
} else {
let rc = temp_rcs.entry(nid).and_modify(|rc| *rc += 1).or_insert(1);
// This does not account for possible existance of user or global graph references
// that are not directly on leafs.
if *rc == self.rcs[nid.i()] && !nodes.contains(&nid) {
drop_nodes.insert(nid);
}
}
}
let mut new_order = Vec::new();
let mut new_rcs: BTreeMap<Id, u32> = BTreeMap::new();
let mut params: Vec<Id> = nodes.iter().copied().collect();
params.reserve(100);
while let Some(nid) = params.pop() {
if let Some(temp_rc) = temp_rcs.get(&nid) {
let rc = new_rcs.entry(nid).and_modify(|rc| *rc += 1).or_insert(1);
if *temp_rc == *rc {
new_order.push(nid);
params.extend(self.nodes[nid.i()].parameters());
}
}
}
new_order.reverse();
// This must go over the graph from the previous loop!
let mut new_leafs = BTreeSet::new();
for nid in &new_order {
if new_rcs[nid] == self.rcs[nid.i()] && !nodes.contains(nid) {
for p in self.nodes[nid.i()].parameters() {
if drop_nodes.contains(&p) {
drop_nodes.insert(*nid);
}
}
} else {
if self.nodes[nid.i()]
.parameters()
.any(|p| drop_nodes.contains(&p))
{
new_leafs.insert(*nid);
}
}
}
//std::println!("RCS: {:?}", self.rcs);
// Dealing with Detach nodes
// TODO this is a waste, optimize this.
let mut user_rc = self.rcs.clone();
for (i, node) in self.nodes.iter().enumerate() {
if self.rcs[i] != 0 {
//std::println!("{i}: {node:?}");
for p in node.parameters() {
user_rc[p.i()] -= 1;
}
}
}
for nid in &new_order {
if let Node::Detach(x) = &self.nodes[nid.i()] {
let mut detach_rc = BTreeMap::new();
new_leafs.insert(*x);
let mut params = Vec::with_capacity(10);
params.push(*x);
while let Some(x) = params.pop() {
let rc = detach_rc.entry(nid).and_modify(|rc| *rc += 1).or_insert(1);
if *rc == self.rcs[x.i()] {
drop_nodes.insert(x);
}
}
}
}
// Increase rcs for nodes that we want to keep evaluated.
// First it MUST be all new_leafs.
for nid in &new_leafs {
// Some leafs are already evaluated, so they are not in rcs
if let Some(rc) = rcs.get_mut(nid) {
*rc += 1;
}
}
//std::println!("Drop nodes: {drop_nodes:?}");
//std::println!("New leafs {new_leafs:?}");
//std::println!("Order: {order:?}");
/*std::println!("");
for nid in &order {
std::println!("{nid} x {}: {:?}", rcs[nid], self.nodes[nid.i()]);
}
std::println!("");*/
self.runtime_backend.evaluate(rcs, &order, &self.nodes)?;
// TODO all evaluated Detach nodes should be renamed to leafs also.
for nid in new_leafs {
self.backprop_nodes_count -= 1;
self.nodes[nid.i()] = Node::Leaf(
get_shape(&self.nodes, nid).clone(),
get_dtype(&self.nodes, nid),
);
}
for nid in drop_nodes {
self.rcs[nid.i()] = 0;
self.runtime_backend.remove(nid)?;
if !matches!(self.nodes[nid.i()], Node::Leaf(..)) {
self.backprop_nodes_count -= 1;
}
}
if self.backprop_nodes_count > 2000000000 {
panic!("Maximum number of tensors in gradient tape has been reached. Zyx supports up to 2 billion tensors on the tape.\
This error can be raised for example in RNNs. Please detach gradient tape (Tensor::detach) from some tensors.\
If you really need to use more tensors, please raise an issue: https://github.com/zk4x/zyx");
}
Ok(())
}
/// Plot dot graph in dot format between given nodes
#[must_use]
pub fn plot_graph_dot(&self, ids: &[Id]) -> alloc::string::String {
// Make a list of visited nodes and their reference counts.
let mut params: Vec<Id> = ids.into();
let mut rcs: BTreeMap<Id, u8> = BTreeMap::new();
while let Some(nid) = params.pop() {
rcs.entry(nid).and_modify(|rc| *rc += 1).or_insert_with(|| {
params.extend(self.nodes[nid.i()].parameters());
1
});
}
// Order them using rcs reference counts
let mut order = Vec::new();
let mut internal_rcs: BTreeMap<Id, u8> = BTreeMap::new();
let mut params: Vec<Id> = ids.into();
while let Some(nid) = params.pop() {
if rcs[&nid]
== *internal_rcs
.entry(nid)
.and_modify(|rc| *rc += 1)
.or_insert(1)
{
order.push(nid);
if rcs.contains_key(&nid) {
params.extend(self.nodes[nid.i()].parameters());
}
}
}
// Build topo, this way it ensures that grad is not used in backprop
// before it was insert_or_add by all parents.
let mut topo: BTreeSet<Id> = ids.iter().copied().collect();
for nid in order.into_iter().rev() {
for p in self.nodes[nid.i()].parameters() {
if topo.contains(&p) {
topo.insert(nid);
}
}
}
crate::utils::plot_graph_dot(&topo, &self.nodes, &self.rcs)
}
/// Common autograd engine, currently used by all backends.
pub fn backward(
&mut self,
x: Id,
sources: &BTreeSet<Id>,
) -> Result<BTreeMap<Id, Id>, ZyxError> {
fn build_topo(x: Id, sources: &BTreeSet<Id>, nodes: &[Node]) -> Vec<Id> {
// Make a list of visited nodes and their reference counts.
let mut params: Vec<Id> = alloc::vec![x];
let mut rcs: BTreeMap<Id, u8> = BTreeMap::new();
while let Some(nid) = params.pop() {
rcs.entry(nid).and_modify(|rc| *rc += 1).or_insert_with(|| {
if !sources.contains(&nid) && !matches!(nodes[nid.i()], Node::Detach(..)) {
params.extend(nodes[nid.i()].parameters());
}
1
});
}
// Order them using rcs reference counts
let mut order = Vec::new();
let mut internal_rcs: BTreeMap<Id, u8> = BTreeMap::new();
let mut params: Vec<Id> = alloc::vec![x];
while let Some(nid) = params.pop() {
if let Some(rc) = rcs.get(&nid) {
if *rc
== *internal_rcs
.entry(nid)
.and_modify(|rc| *rc += 1)
.or_insert(1)
{
order.push(nid);
params.extend(nodes[nid.i()].parameters());
}
}
}
// Build topo, this way it ensures that grad is not used in backprop
// before it was insert_or_add by all parents.
let mut topo = Vec::new();
let mut req_grad = sources.clone();
let mut visited = BTreeSet::new();
for nid in order.into_iter().rev() {
for p in nodes[nid.i()].parameters() {
if req_grad.contains(&p) && visited.insert(nid) {
req_grad.insert(nid);
topo.push(nid);
}
}
}
topo.reverse();
topo
}
let topo = build_topo(x, sources, &self.nodes);
//std::println!("Topo: {topo:?}");
let req_grad: BTreeSet<Id> = topo
.iter()
.copied()
.chain(sources.iter().copied())
.collect();
// Node -> Grad
let mut grads: BTreeMap<Id, Id> = BTreeMap::new();
// Initial gradient of ones
let grad1 = match get_dtype(&self.nodes, x) {
DType::F32 => self.store([1f32]),
DType::F64 => self.store([1f64]),
DType::I32 => self.store([1i32]),
}?;
let sh = get_shape(&self.nodes, x).clone();
grads.insert(x, self.push(Node::Expand(grad1, sh))?);
self.release(grad1)?;
//std::println!("{:?}", self.nodes.last().unwrap());
fn insert_or_add_grad<B: RuntimeBackend>(
r: &mut Runtime<B>,
grads: &mut BTreeMap<Id, Id>,
x: Id,
grad: Id,
) -> Result<(), ZyxError> {
match grads.entry(x) {
Entry::Vacant(e) => {
e.insert(grad);
}
Entry::Occupied(e) => {
let (k, prev_grad) = e.remove_entry();
grads.insert(k, r.push(Node::Add(prev_grad, grad))?);
r.release(prev_grad)?;
r.release(grad)?;
}
}
Ok(())
}
// backpropagate
// TODO this is not very clean code. Can we make it cleaner?
for nid in topo {
let grad = grads[&nid];
match self.nodes[nid.i()] {
Node::Detach(..) | Node::Leaf(..) | Node::Uniform(..) => {}
Node::Add(x, y) => {
if req_grad.contains(&x) {
self.retain(grad);
insert_or_add_grad(self, &mut grads, x, grad)?;
}
if req_grad.contains(&y) {
self.retain(grad);
insert_or_add_grad(self, &mut grads, y, grad)?;
}
}
Node::Sub(x, y) => {
if req_grad.contains(&x) {
self.retain(grad);
insert_or_add_grad(self, &mut grads, x, grad)?;
}
if req_grad.contains(&y) {
let grad = self.push(Node::Neg(grad))?;
insert_or_add_grad(self, &mut grads, y, grad)?;
}
}
Node::Mul(x, y) => {
if req_grad.contains(&x) {
let grad = self.push(Node::Mul(y, grad))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
if req_grad.contains(&y) {
let grad = self.push(Node::Mul(x, grad))?;
insert_or_add_grad(self, &mut grads, y, grad)?;
}
}
Node::Div(x, y) => {
if req_grad.contains(&x) {
grads.insert(x, self.push(Node::Div(grad, y))?);
insert_or_add_grad(self, &mut grads, x, grad)?;
}
if req_grad.contains(&y) {
// -grad*x/(y^2)
let two = match get_dtype(&self.nodes, y) {
DType::F32 => self.store([2f32]),
DType::F64 => self.store([2f64]),
DType::I32 => self.store([2i32]),
}?;
let two_e =
self.push(Node::Expand(two, get_shape(&self.nodes, y).clone()))?;
self.release(two)?;
let two_2 = self.push(Node::Pow(y, two_e))?;
self.release(two_e)?;
let temp = self.push(Node::Mul(x, grad))?;
let temp_neg = self.push(Node::Neg(temp))?;
self.release(temp)?;
let y_grad = self.push(Node::Div(temp_neg, two_2))?;
self.release(temp_neg)?;
self.release(two_2)?;
grads.insert(y, y_grad);
insert_or_add_grad(self, &mut grads, y, grad)?;
}
}
Node::Pow(x, y) => {
if req_grad.contains(&x) {
// grad * y * x.pow(y-1)
let one = match get_dtype(&self.nodes, y) {
DType::F32 => self.store([1f32]),
DType::F64 => self.store([1f64]),
DType::I32 => self.store([1i32]),
}?;
let one1 =
self.push(Node::Expand(one, get_shape(&self.nodes, y).clone()))?;
self.release(one)?;
let y_1 = self.push(Node::Sub(y, one1))?;
self.release(one1)?;
let pow_y_1 = self.push(Node::Pow(x, y_1))?;
self.release(y_1)?;
let y_mul = self.push(Node::Mul(y, pow_y_1))?;
self.release(pow_y_1)?;
let x_grad = self.push(Node::Mul(grad, y_mul))?;
self.release(y_mul)?;
insert_or_add_grad(self, &mut grads, x, x_grad)?;
}
if req_grad.contains(&y) {
// grad * x.pow(y) * ln(x)
let temp1 = self.push(Node::Ln(x))?;
let temp2 = self.push(Node::Mul(nid, temp1))?;
self.release(temp1)?;
let y_grad = self.push(Node::Mul(grad, temp2))?;
self.release(temp2)?;
insert_or_add_grad(self, &mut grads, y, y_grad)?;
}
}
Node::Cmplt(..) => {
panic!(
"Compare less than (cmplt, operator <) is not a differentiable operation."
);
}
Node::Where(x, y, z) => {
//return None, \
//self.x.e(TernaryOps.WHERE, grad_output, grad_output.const(0)) if self.needs_input_grad[1] else None, \
//self.x.e(TernaryOps.WHERE, grad_output.const(0), grad_output) if self.needs_input_grad[2] else None
if req_grad.contains(&y) {
let zero = match get_dtype(&self.nodes, x) {
DType::F32 => self.store([0f32]),
DType::F64 => self.store([0f64]),
DType::I32 => self.store([0i32]),
}?;
let zeros =
self.push(Node::Expand(zero, get_shape(&self.nodes, x).clone()))?;
self.release(zero)?;
let y_grad = self.push(Node::Where(x, grad, zeros))?;
self.release(zeros)?;
insert_or_add_grad(self, &mut grads, y, y_grad)?;
}
if req_grad.contains(&z) {
let zero = match get_dtype(&self.nodes, x) {
DType::F32 => self.store([0f32]),
DType::F64 => self.store([0f64]),
DType::I32 => self.store([0i32]),
}?;
let zeros =
self.push(Node::Expand(zero, get_shape(&self.nodes, x).clone()))?;
self.release(zero)?;
let z_grad = self.push(Node::Where(x, zeros, grad))?;
self.release(zeros)?;
insert_or_add_grad(self, &mut grads, z, z_grad)?;
}
}
Node::ReLU(x) => {
let zero = match get_dtype(&self.nodes, x) {
DType::F32 => self.store([0f32]),
DType::F64 => self.store([0f64]),
DType::I32 => self.store([0i32]),
}?;
let zeros = self.push(Node::Expand(zero, get_shape(&self.nodes, x).clone()))?;
self.release(zero)?;
let zl = self.push(Node::Cmplt(zeros, x))?;
self.release(zeros)?;
let x_grad = self.push(Node::Mul(zl, grad))?;
self.release(zl)?;
insert_or_add_grad(self, &mut grads, x, x_grad)?;
}
Node::Exp(x) => {
let grad = self.push(Node::Mul(nid, grad))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Ln(x) => {
let grad = self.push(Node::Div(grad, x))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Sin(x) => {
let x_temp = self.push(Node::Cos(x))?;
let grad = self.push(Node::Mul(x_temp, grad))?;
self.release(x_temp)?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Cos(x) => {
let x_temp1 = self.push(Node::Sin(x))?;
let x_temp = self.push(Node::Neg(x_temp1))?;
self.release(x_temp1)?;
let grad = self.push(Node::Mul(x_temp, grad))?;
self.release(x_temp)?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Sqrt(x) => {
// x_grad = grad/(2*sqrt(x))
let x_shape = get_shape(&self.nodes, x).clone();
let two1 = match get_dtype(&self.nodes, x) {
DType::F32 => self.store([2f32]),
DType::F64 => self.store([2f64]),
DType::I32 => self.store([2i32]),
}?;
let two2 = self.push(Node::Expand(two1, x_shape))?;
self.release(two1)?;
let x_temp = self.push(Node::Mul(two2, nid))?;
self.release(two2)?;
let grad = self.push(Node::Div(grad, x_temp))?;
self.release(x_temp)?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Cast(x, _) => {
let grad = self.push(Node::Cast(grad, get_dtype(&self.nodes, x)))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Neg(x) => {
let grad = self.push(Node::Neg(grad))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Tanh(x) => {
// 1 - tanh^2(x)
let shape = get_shape(&self.nodes, x).clone();
let (two1, one1) = match get_dtype(&self.nodes, x) {
DType::F32 => (self.store([2f32])?, self.store([1f32])?),
DType::F64 => (self.store([2f64])?, self.store([1f64])?),
DType::I32 => (self.store([2i32])?, self.store([1i32])?),
};
let two2 = self.push(Node::Expand(two1, shape.clone()))?;
self.release(two1)?;
let two = self.push(Node::Pow(nid, two2))?;
self.release(two2)?;
let one2 = self.push(Node::Expand(one1, shape))?;
self.release(one1)?;
let one = self.push(Node::Sub(one2, two))?;
self.release(one2)?;
self.release(two)?;
let grad = self.push(Node::Mul(one, grad))?;
self.release(one)?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Reshape(x, ..) => {
let grad = self.push(Node::Reshape(grad, get_shape(&self.nodes, x).clone()))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Expand(x, ref sh) => {
let org_shape = get_shape(&self.nodes, x).clone();
let axes = org_shape.expand_axes(sh);
let temp = self.push(Node::Sum(grad, axes, org_shape.clone()))?;
let grad = self.push(Node::Reshape(temp, org_shape))?;
self.release(temp)?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Permute(x, ref axes, _) => {
let shape = get_shape(&self.nodes, x);
let grad = self.push(Node::Permute(grad, axes.argsort(), shape.clone()))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Pad(x, ref padding, _) => {
let sh = get_shape(&self.nodes, x).clone();
let inv_padding = padding.iter().map(|(lp, rp)| (-lp, -rp)).collect();
let grad = self.push(Node::Pad(grad, inv_padding, sh))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Sum(x, ..) => {
let grad = self.push(Node::Expand(grad, get_shape(&self.nodes, x).clone()))?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
Node::Max(x, ..) => {
// x_grad = (1 - (x < z.expand(x.shape()))) * grad
let x_shape = get_shape(&self.nodes, x).clone();
let z_temp = self.push(Node::Expand(nid, x_shape.clone()))?;
let cmp_t = self.push(Node::Cmplt(x, z_temp))?;
self.release(z_temp)?;
let one1 = match get_dtype(&self.nodes, x) {
DType::F32 => self.store([1f32]),
DType::F64 => self.store([1f64]),
DType::I32 => self.store([1i32]),
}?;
let one2 = self.push(Node::Expand(one1, x_shape))?;
self.release(one1)?;
let max_1s = self.push(Node::Sub(one2, cmp_t))?;
self.release(one2)?;
self.release(cmp_t)?;
let grad = self.push(Node::Mul(max_1s, grad))?;
self.release(max_1s)?;
insert_or_add_grad(self, &mut grads, x, grad)?;
}
}
}
let mut res = BTreeMap::new();
for (k, v) in grads.into_iter() {
if sources.contains(&k) {
res.insert(k, v);
} else {
self.release(v)?;
}
}
Ok(res)
}
}