1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(feature = "std")]
extern crate core;

#[cfg(not(feature = "std"))]
use alloc::vec::Vec;

use crate::{
    registry,
    Handle,
    Registry,
};
use core::marker::PhantomData;

/// A strong handle to data registered in a specific [`StrongRegistry`].
///
/// Strong handles are useful for separating handles from different registries. A handle from one
/// strong registry cannot be used for a different strong registry because the handle type is
/// statically enforced at compile time.
pub trait StrongHandle: From<Handle> {
    /// Returns the associated handle.
    fn handle(&self) -> Handle;
}

/// The same as [`Registry<T>`], but with strongly-typed handles to prevent handles from being
/// shared across multiple registries.
///
/// The handle type must implement the [`StrongHandle`] trait.
pub struct StrongRegistry<H, T> {
    registry: Registry<T>,
    phantom_handle: PhantomData<H>,
}

impl<H, T> StrongRegistry<H, T>
where
    H: StrongHandle,
{
    /// Creates a new strong registry.
    pub fn new() -> Self {
        Self {
            registry: Registry::new(),
            phantom_handle: PhantomData,
        }
    }

    /// Creates a new strong registry with the given capacity.
    pub fn with_capacity(size: usize) -> Self {
        Self {
            registry: Registry::with_capacity(size),
            phantom_handle: PhantomData,
        }
    }

    /// Returns the number of elements owned by the strong registry.
    pub fn len(&self) -> usize {
        self.registry.len()
    }

    /// Registers a new value in the arena, returning a handle to that value.
    pub fn register(&self, value: T) -> H {
        H::from(self.registry.register(value))
    }

    /// Registers the contents of an iterator in the registry.
    ///
    /// Returns a numeric range of handles `[a, b)`, where `a` is the handle of the first element
    /// inserted and `b` is the handle after the last element inserted.
    pub fn register_extend<I>(&self, iterable: I) -> (H, H)
    where
        I: IntoIterator<Item = T>,
    {
        let (a, b) = self.registry.register_extend(iterable);
        (H::from(a), H::from(b))
    }

    /// Ensures there is enough continuous space for at least `additional` values.
    pub fn reserve(&self, additional: usize) {
        self.registry.reserve(additional)
    }

    /// Converts the [`StrongRegistry<T>`] into a [`Vec<T>`].
    ///
    /// Items will maintain their handle as their vector index.
    pub fn into_vec(self) -> Vec<T> {
        self.registry.into_vec()
    }

    /// Returns an iterator that provides mutable access to all elements in the registry, in order
    /// of registration.
    ///
    /// Registries only allow mutable iteration because the entire registry must be borrowed for the
    /// duration of the iteration. The mutable borrow to call this method allows Rust's borrow
    /// checker to enforce this rule.
    pub fn iter_mut(&mut self) -> registry::IterMut<T> {
        self.registry.iter_mut()
    }

    /// Returns a mutable reference to a value previously registered in the strong registry.
    pub fn get_mut(&self, handle: H) -> Option<&mut T> {
        self.registry.get_mut(handle.handle())
    }

    /// Returns a reference to a value previously registered in the strong registry.
    pub fn get(&self, handle: H) -> Option<&T> {
        self.registry.get(handle.handle())
    }
}

#[cfg(test)]
mod strong_registry_test {
    use crate::{
        Handle,
        StrongHandle,
        StrongRegistry,
    };
    use core::cell::Cell;

    // A shared counter for how many times a value is deallocated.
    struct DropCounter<'c>(&'c Cell<u32>);

    impl<'c> Drop for DropCounter<'c> {
        fn drop(&mut self) {
            self.0.set(self.0.get() + 1);
        }
    }

    #[derive(Clone, Copy, Debug, PartialEq, Eq)]
    struct NodeHandle(Handle);

    impl From<Handle> for NodeHandle {
        fn from(value: Handle) -> Self {
            Self(value)
        }
    }

    impl StrongHandle for NodeHandle {
        fn handle(&self) -> Handle {
            self.0
        }
    }

    // A node type, like one used in a list, tree, or graph data structure.
    //
    // Helps us verify that arena-allocated values can refer to each other.
    struct Node<'d, T> {
        parent: Option<NodeHandle>,
        value: T,
        #[allow(dead_code)]
        drop_counter: DropCounter<'d>,
    }

    impl<'a, 'd, T> Node<'d, T> {
        pub fn new(parent: Option<NodeHandle>, value: T, drop_counter: DropCounter<'d>) -> Self {
            Self {
                parent,
                value,
                drop_counter,
            }
        }
    }

    #[test]
    fn works_exactly_like_registry() {
        let drop_counter = Cell::new(0);
        {
            let registry = StrongRegistry::with_capacity(2);

            // Allocate a chain of nodes that refer to each other.
            let mut handle = registry.register(Node::new(None, 1, DropCounter(&drop_counter)));
            assert_eq!(registry.len(), 1);
            handle = registry.register(Node::new(Some(handle), 2, DropCounter(&drop_counter)));
            assert_eq!(registry.len(), 2);
            handle = registry.register(Node::new(Some(handle), 3, DropCounter(&drop_counter)));
            assert_eq!(registry.len(), 3);
            handle = registry.register(Node::new(Some(handle), 4, DropCounter(&drop_counter)));
            assert_eq!(registry.len(), 4);

            let mut node = registry.get(handle).unwrap();
            assert_eq!(node.value, 4);
            node = registry.get(node.parent.unwrap()).unwrap();
            assert_eq!(node.value, 3);
            node = registry.get(node.parent.unwrap()).unwrap();
            assert_eq!(node.value, 2);
            node = registry.get(node.parent.unwrap()).unwrap();
            assert_eq!(node.value, 1);
            assert_eq!(node.parent, None);
            assert_eq!(drop_counter.get(), 0);
        }
        // All values deallocated at the same time.
        assert_eq!(drop_counter.get(), 4);
    }
}