zng_task/
lib.rs

1#![doc(html_favicon_url = "https://raw.githubusercontent.com/zng-ui/zng/main/examples/image/res/zng-logo-icon.png")]
2#![doc(html_logo_url = "https://raw.githubusercontent.com/zng-ui/zng/main/examples/image/res/zng-logo.png")]
3//!
4//! Parallel async tasks and async task runners.
5//!
6//! # Crate
7//!
8#![doc = include_str!(concat!("../", std::env!("CARGO_PKG_README")))]
9#![warn(unused_extern_crates)]
10#![warn(missing_docs)]
11
12use std::{
13    fmt,
14    hash::Hash,
15    mem, panic,
16    pin::Pin,
17    sync::{
18        Arc,
19        atomic::{AtomicBool, Ordering},
20    },
21    task::Poll,
22};
23
24#[doc(no_inline)]
25pub use parking_lot;
26use parking_lot::Mutex;
27
28mod crate_util;
29
30use crate::crate_util::PanicResult;
31use zng_app_context::{LocalContext, app_local};
32use zng_time::Deadline;
33use zng_var::{ResponseVar, VarValue, response_done_var, response_var};
34
35#[cfg(test)]
36mod tests;
37
38#[doc(no_inline)]
39pub use rayon;
40
41/// Async filesystem primitives.
42///
43/// This module is the [async-fs](https://docs.rs/async-fs) crate re-exported for convenience.
44pub mod fs {
45    #[doc(inline)]
46    pub use async_fs::*;
47}
48
49pub mod channel;
50pub mod io;
51mod ui;
52
53pub mod http;
54
55pub mod ipc;
56
57mod rayon_ctx;
58
59pub use rayon_ctx::*;
60
61pub use ui::*;
62
63mod progress;
64pub use progress::*;
65
66/// Spawn a parallel async task, this function is not blocking and the `task` starts executing immediately.
67///
68/// # Parallel
69///
70/// The task runs in the primary [`rayon`] thread-pool, every [`poll`](Future::poll) happens inside a call to `rayon::spawn`.
71///
72/// You can use parallel iterators, `join` or any of rayon's utilities inside `task` to make it multi-threaded,
73/// otherwise it will run in a single thread at a time, still not blocking the UI.
74///
75/// The [`rayon`] crate is re-exported in `task::rayon` for convenience and compatibility.
76///
77/// # Async
78///
79/// The `task` is also a future so you can `.await`, after each `.await` the task continues executing in whatever `rayon` thread
80/// is free, so the `task` should either be doing CPU intensive work or awaiting, blocking IO operations
81/// block the thread from being used by other tasks reducing overall performance. You can use [`wait`] for IO
82/// or blocking operations and for networking you can use any of the async crates, as long as they start their own *event reactor*.
83///
84/// The `task` lives inside the [`Waker`] when awaiting and inside `rayon::spawn` when running.
85///
86/// # Examples
87///
88/// ```
89/// # use zng_task::{self as task, *, rayon::iter::*};
90/// # use zng_var::*;
91/// # struct SomeStruct { sum_response: ResponseVar<usize> }
92/// # impl SomeStruct {
93/// fn on_event(&mut self) {
94///     let (responder, response) = response_var();
95///     self.sum_response = response;
96///
97///     task::spawn(async move {
98///         let r = (0..1000).into_par_iter().map(|i| i * i).sum();
99///
100///         responder.respond(r);
101///     });
102/// }
103///
104/// fn on_update(&mut self) {
105///     if let Some(result) = self.sum_response.rsp_new() {
106///         println!("sum of squares 0..1000: {result}");
107///     }
108/// }
109/// # }
110/// ```
111///
112/// The example uses the `rayon` parallel iterator to compute a result and uses a [`response_var`] to send the result to the UI.
113/// The task captures the caller [`LocalContext`] so the response variable will set correctly.
114///
115/// Note that this function is the most basic way to spawn a parallel task where you must setup channels to the rest of the app yourself,
116/// you can use [`respond`] to avoid having to manually set a response, or [`run`] to `.await` the result.
117///
118/// # Panic Handling
119///
120/// If the `task` panics the panic message is logged as an error, the panic is otherwise ignored.
121///
122/// # Unwind Safety
123///
124/// This function disables the [unwind safety validation], meaning that in case of a panic shared
125/// data can end-up in an invalid, but still memory safe, state. If you are worried about that only use
126/// poisoning mutexes or atomics to mutate shared data or use [`run_catch`] to detect a panic or [`run`]
127/// to propagate a panic.
128///
129/// [unwind safety validation]: std::panic::UnwindSafe
130/// [`Waker`]: std::task::Waker
131/// [`rayon`]: https://docs.rs/rayon
132/// [`LocalContext`]: zng_app_context::LocalContext
133/// [`response_var`]: zng_var::response_var
134pub fn spawn<F>(task: impl IntoFuture<IntoFuture = F>)
135where
136    F: Future<Output = ()> + Send + 'static,
137{
138    Arc::new(RayonTask {
139        ctx: LocalContext::capture(),
140        fut: Mutex::new(Some(Box::pin(task.into_future()))),
141    })
142    .poll()
143}
144
145/// Polls the `task` once immediately on the calling thread, if the `task` is pending, continues execution in [`spawn`].
146pub fn poll_spawn<F>(task: impl IntoFuture<IntoFuture = F>)
147where
148    F: Future<Output = ()> + Send + 'static,
149{
150    struct PollRayonTask {
151        fut: Mutex<Option<(RayonSpawnFut, Option<LocalContext>)>>,
152    }
153    impl PollRayonTask {
154        // start task in calling thread
155        fn poll(self: Arc<Self>) {
156            let mut task = self.fut.lock();
157            let (mut t, _) = task.take().unwrap();
158
159            let waker = self.clone().into();
160
161            match t.as_mut().poll(&mut std::task::Context::from_waker(&waker)) {
162                Poll::Ready(()) => {}
163                Poll::Pending => {
164                    let ctx = LocalContext::capture();
165                    *task = Some((t, Some(ctx)));
166                }
167            }
168        }
169    }
170    impl std::task::Wake for PollRayonTask {
171        fn wake(self: Arc<Self>) {
172            // continue task in spawn threads
173            if let Some((task, Some(ctx))) = self.fut.lock().take() {
174                Arc::new(RayonTask {
175                    ctx,
176                    fut: Mutex::new(Some(Box::pin(task))),
177                })
178                .poll();
179            }
180        }
181    }
182
183    Arc::new(PollRayonTask {
184        fut: Mutex::new(Some((Box::pin(task.into_future()), None))),
185    })
186    .poll()
187}
188
189type RayonSpawnFut = Pin<Box<dyn Future<Output = ()> + Send>>;
190
191// A future that is its own waker that polls inside rayon spawn tasks.
192struct RayonTask {
193    ctx: LocalContext,
194    fut: Mutex<Option<RayonSpawnFut>>,
195}
196impl RayonTask {
197    fn poll(self: Arc<Self>) {
198        rayon::spawn(move || {
199            // this `Option<Fut>` dance is used to avoid a `poll` after `Ready` or panic.
200            let mut task = self.fut.lock();
201            if let Some(mut t) = task.take() {
202                let waker = self.clone().into();
203
204                // load app context
205                self.ctx.clone().with_context(move || {
206                    let r = panic::catch_unwind(panic::AssertUnwindSafe(move || {
207                        // poll future
208                        if t.as_mut().poll(&mut std::task::Context::from_waker(&waker)).is_pending() {
209                            // not done
210                            *task = Some(t);
211                        }
212                    }));
213                    if let Err(p) = r {
214                        tracing::error!("panic in `task::spawn`: {}", crate_util::panic_str(&p));
215                    }
216                });
217            }
218        })
219    }
220}
221impl std::task::Wake for RayonTask {
222    fn wake(self: Arc<Self>) {
223        self.poll()
224    }
225}
226
227/// Rayon join with local context.
228///
229/// This function captures the [`LocalContext`] of the calling thread and propagates it to the threads that run the
230/// operations.
231///
232/// See `rayon::join` for more details about join.
233///
234/// [`LocalContext`]: zng_app_context::LocalContext
235pub fn join<A, B, RA, RB>(op_a: A, op_b: B) -> (RA, RB)
236where
237    A: FnOnce() -> RA + Send,
238    B: FnOnce() -> RB + Send,
239    RA: Send,
240    RB: Send,
241{
242    self::join_context(move |_| op_a(), move |_| op_b())
243}
244
245/// Rayon join context with local context.
246///
247/// This function captures the [`LocalContext`] of the calling thread and propagates it to the threads that run the
248/// operations.
249///
250/// See `rayon::join_context` for more details about join.
251///
252/// [`LocalContext`]: zng_app_context::LocalContext
253pub fn join_context<A, B, RA, RB>(op_a: A, op_b: B) -> (RA, RB)
254where
255    A: FnOnce(rayon::FnContext) -> RA + Send,
256    B: FnOnce(rayon::FnContext) -> RB + Send,
257    RA: Send,
258    RB: Send,
259{
260    let ctx = LocalContext::capture();
261    let ctx = &ctx;
262    rayon::join_context(
263        move |a| {
264            if a.migrated() {
265                ctx.clone().with_context(|| op_a(a))
266            } else {
267                op_a(a)
268            }
269        },
270        move |b| {
271            if b.migrated() {
272                ctx.clone().with_context(|| op_b(b))
273            } else {
274                op_b(b)
275            }
276        },
277    )
278}
279
280/// Rayon scope with local context.
281///
282/// This function captures the [`LocalContext`] of the calling thread and propagates it to the threads that run the
283/// operations.
284///
285/// See `rayon::scope` for more details about scope.
286///
287/// [`LocalContext`]: zng_app_context::LocalContext
288pub fn scope<'scope, OP, R>(op: OP) -> R
289where
290    OP: FnOnce(ScopeCtx<'_, 'scope>) -> R + Send,
291    R: Send,
292{
293    let ctx = LocalContext::capture();
294
295    // Cast `&'_ ctx` to `&'scope ctx` to "inject" the context in the scope.
296    // Is there a better way to do this? I hope so.
297    //
298    // SAFETY:
299    // * We are extending `'_` to `'scope`, that is one of the documented valid usages of `transmute`.
300    // * No use after free because `rayon::scope` joins all threads before returning and we only drop `ctx` after.
301    let ctx_ref: &'_ LocalContext = &ctx;
302    let ctx_scope_ref: &'scope LocalContext = unsafe { std::mem::transmute(ctx_ref) };
303
304    let r = rayon::scope(move |s| {
305        op(ScopeCtx {
306            scope: s,
307            ctx: ctx_scope_ref,
308        })
309    });
310
311    drop(ctx);
312
313    r
314}
315
316/// Represents a fork-join scope which can be used to spawn any number of tasks that run in the caller's thread context.
317///
318/// See [`scope`] for more details.
319#[derive(Clone, Copy, Debug)]
320pub struct ScopeCtx<'a, 'scope: 'a> {
321    scope: &'a rayon::Scope<'scope>,
322    ctx: &'scope LocalContext,
323}
324impl<'a, 'scope: 'a> ScopeCtx<'a, 'scope> {
325    /// Spawns a job into the fork-join scope `self`. The job runs in the captured thread context.
326    ///
327    /// See `rayon::Scope::spawn` for more details.
328    pub fn spawn<F>(self, f: F)
329    where
330        F: FnOnce(ScopeCtx<'_, 'scope>) + Send + 'scope,
331    {
332        let ctx = self.ctx;
333        self.scope
334            .spawn(move |s| ctx.clone().with_context(move || f(ScopeCtx { scope: s, ctx })));
335    }
336}
337
338/// Spawn a parallel async task that can also be `.await` for the task result.
339///
340/// # Parallel
341///
342/// The task runs in the primary [`rayon`] thread-pool, every [`poll`](Future::poll) happens inside a call to `rayon::spawn`.
343///
344/// You can use parallel iterators, `join` or any of rayon's utilities inside `task` to make it multi-threaded,
345/// otherwise it will run in a single thread at a time, still not blocking the UI.
346///
347/// The [`rayon`] crate is re-exported in `task::rayon` for convenience and compatibility.
348///
349/// # Async
350///
351/// The `task` is also a future so you can `.await`, after each `.await` the task continues executing in whatever `rayon` thread
352/// is free, so the `task` should either be doing CPU intensive work or awaiting, blocking IO operations
353/// block the thread from being used by other tasks reducing overall performance. You can use [`wait`] for IO
354/// or blocking operations and for networking you can use any of the async crates, as long as they start their own *event reactor*.
355///
356/// The `task` lives inside the [`Waker`] when awaiting and inside `rayon::spawn` when running.
357///
358/// # Examples
359///
360/// ```
361/// # use zng_task::{self as task, rayon::iter::*};
362/// # struct SomeStruct { sum: usize }
363/// # async fn read_numbers() -> Vec<usize> { vec![] }
364/// # impl SomeStruct {
365/// async fn on_event(&mut self) {
366///     self.sum = task::run(async { read_numbers().await.par_iter().map(|i| i * i).sum() }).await;
367/// }
368/// # }
369/// ```
370///
371/// The example `.await` for some numbers and then uses a parallel iterator to compute a result, this all runs in parallel
372/// because it is inside a `run` task. The task result is then `.await` inside one of the UI async tasks. Note that the
373/// task captures the caller [`LocalContext`] so you can interact with variables and UI services directly inside the task too.
374///
375/// # Cancellation
376///
377/// The task starts running immediately, awaiting the returned future merely awaits for a message from the worker threads and
378/// that means the `task` future is not owned by the returned future. Usually to *cancel* a future you only need to drop it,
379/// in this task dropping the returned future will only drop the `task` once it reaches a `.await` point and detects that the
380/// result channel is disconnected.
381///
382/// If you want to deterministically known that the `task` was cancelled use a cancellation signal.
383///
384/// # Panic Propagation
385///
386/// If the `task` panics the panic is resumed in the awaiting thread using [`resume_unwind`]. You
387/// can use [`run_catch`] to get the panic as an error instead.
388///
389/// [`resume_unwind`]: panic::resume_unwind
390/// [`Waker`]: std::task::Waker
391/// [`rayon`]: https://docs.rs/rayon
392/// [`LocalContext`]: zng_app_context::LocalContext
393pub async fn run<R, T>(task: impl IntoFuture<IntoFuture = T>) -> R
394where
395    R: Send + 'static,
396    T: Future<Output = R> + Send + 'static,
397{
398    match run_catch(task).await {
399        Ok(r) => r,
400        Err(p) => panic::resume_unwind(p),
401    }
402}
403
404/// Like [`run`] but catches panics.
405///
406/// This task works the same and has the same utility as [`run`], except if returns panic messages
407/// as an error instead of propagating the panic.
408///
409/// # Unwind Safety
410///
411/// This function disables the [unwind safety validation], meaning that in case of a panic shared
412/// data can end-up in an invalid, but still memory safe, state. If you are worried about that only use
413/// poisoning mutexes or atomics to mutate shared data or discard all shared data used in the `task`
414/// if this function returns an error.
415///
416/// [unwind safety validation]: std::panic::UnwindSafe
417pub async fn run_catch<R, T>(task: impl IntoFuture<IntoFuture = T>) -> PanicResult<R>
418where
419    R: Send + 'static,
420    T: Future<Output = R> + Send + 'static,
421{
422    type Fut<R> = Pin<Box<dyn Future<Output = R> + Send>>;
423
424    // A future that is its own waker that polls inside the rayon primary thread-pool.
425    struct RayonCatchTask<R> {
426        ctx: LocalContext,
427        fut: Mutex<Option<Fut<R>>>,
428        sender: flume::Sender<PanicResult<R>>,
429    }
430    impl<R: Send + 'static> RayonCatchTask<R> {
431        fn poll(self: Arc<Self>) {
432            let sender = self.sender.clone();
433            if sender.is_disconnected() {
434                return; // cancel.
435            }
436            rayon::spawn(move || {
437                // this `Option<Fut>` dance is used to avoid a `poll` after `Ready` or panic.
438                let mut task = self.fut.lock();
439                if let Some(mut t) = task.take() {
440                    let waker = self.clone().into();
441                    let mut cx = std::task::Context::from_waker(&waker);
442
443                    self.ctx.clone().with_context(|| {
444                        let r = panic::catch_unwind(panic::AssertUnwindSafe(|| t.as_mut().poll(&mut cx)));
445                        match r {
446                            Ok(Poll::Ready(r)) => {
447                                drop(task);
448                                let _ = sender.send(Ok(r));
449                            }
450                            Ok(Poll::Pending) => {
451                                *task = Some(t);
452                            }
453                            Err(p) => {
454                                drop(task);
455                                let _ = sender.send(Err(p));
456                            }
457                        }
458                    });
459                }
460            })
461        }
462    }
463    impl<R: Send + 'static> std::task::Wake for RayonCatchTask<R> {
464        fn wake(self: Arc<Self>) {
465            self.poll()
466        }
467    }
468
469    let (sender, receiver) = channel::bounded(1);
470
471    Arc::new(RayonCatchTask {
472        ctx: LocalContext::capture(),
473        fut: Mutex::new(Some(Box::pin(task.into_future()))),
474        sender: sender.into(),
475    })
476    .poll();
477
478    receiver.recv().await.unwrap()
479}
480
481/// Spawn a parallel async task that will send its result to a [`ResponseVar<R>`].
482///
483/// The [`run`] documentation explains how `task` is *parallel* and *async*. The `task` starts executing immediately.
484///
485/// # Examples
486///
487/// ```
488/// # use zng_task::{self as task, rayon::iter::*};
489/// # use zng_var::*;
490/// # struct SomeStruct { sum_response: ResponseVar<usize> }
491/// # async fn read_numbers() -> Vec<usize> { vec![] }
492/// # impl SomeStruct {
493/// fn on_event(&mut self) {
494///     self.sum_response = task::respond(async { read_numbers().await.par_iter().map(|i| i * i).sum() });
495/// }
496///
497/// fn on_update(&mut self) {
498///     if let Some(result) = self.sum_response.rsp_new() {
499///         println!("sum of squares: {result}");
500///     }
501/// }
502/// # }
503/// ```
504///
505/// The example `.await` for some numbers and then uses a parallel iterator to compute a result. The result is send to
506/// `sum_response` that is a [`ResponseVar<R>`].
507///
508/// # Cancellation
509///
510/// Dropping the [`ResponseVar<R>`] does not cancel the `task`, it will still run to completion.
511///
512/// # Panic Handling
513///
514/// If the `task` panics the panic is logged as an error and resumed in the response var modify closure.
515///
516/// [`resume_unwind`]: panic::resume_unwind
517/// [`ResponseVar<R>`]: zng_var::ResponseVar
518/// [`response_var`]: zng_var::response_var
519pub fn respond<R, F>(task: F) -> ResponseVar<R>
520where
521    R: VarValue,
522    F: Future<Output = R> + Send + 'static,
523{
524    type Fut<R> = Pin<Box<dyn Future<Output = R> + Send>>;
525
526    let (responder, response) = response_var();
527
528    // A future that is its own waker that polls inside the rayon primary thread-pool.
529    struct RayonRespondTask<R: VarValue> {
530        ctx: LocalContext,
531        fut: Mutex<Option<Fut<R>>>,
532        responder: zng_var::ResponderVar<R>,
533    }
534    impl<R: VarValue> RayonRespondTask<R> {
535        fn poll(self: Arc<Self>) {
536            let responder = self.responder.clone();
537            if responder.strong_count() == 2 {
538                return; // cancel.
539            }
540            rayon::spawn(move || {
541                // this `Option<Fut>` dance is used to avoid a `poll` after `Ready` or panic.
542                let mut task = self.fut.lock();
543                if let Some(mut t) = task.take() {
544                    let waker = self.clone().into();
545                    let mut cx = std::task::Context::from_waker(&waker);
546
547                    self.ctx.clone().with_context(|| {
548                        let r = panic::catch_unwind(panic::AssertUnwindSafe(|| t.as_mut().poll(&mut cx)));
549                        match r {
550                            Ok(Poll::Ready(r)) => {
551                                drop(task);
552
553                                responder.respond(r);
554                            }
555                            Ok(Poll::Pending) => {
556                                *task = Some(t);
557                            }
558                            Err(p) => {
559                                tracing::error!("panic in `task::respond`: {}", crate_util::panic_str(&p));
560                                drop(task);
561                                responder.modify(move |_| panic::resume_unwind(p));
562                            }
563                        }
564                    });
565                }
566            })
567        }
568    }
569    impl<R: VarValue> std::task::Wake for RayonRespondTask<R> {
570        fn wake(self: Arc<Self>) {
571            self.poll()
572        }
573    }
574
575    Arc::new(RayonRespondTask {
576        ctx: LocalContext::capture(),
577        fut: Mutex::new(Some(Box::pin(task))),
578        responder,
579    })
580    .poll();
581
582    response
583}
584
585/// Polls the `task` once immediately on the calling thread, if the `task` is ready returns the response already set,
586/// if the `task` is pending continues execution like [`respond`].
587pub fn poll_respond<R, F>(task: impl IntoFuture<IntoFuture = F>) -> ResponseVar<R>
588where
589    R: VarValue,
590    F: Future<Output = R> + Send + 'static,
591{
592    enum QuickResponse<R: VarValue> {
593        Quick(Option<R>),
594        Response(zng_var::ResponderVar<R>),
595    }
596    let task = task.into_future();
597    let q = Arc::new(Mutex::new(QuickResponse::Quick(None)));
598    poll_spawn(zng_clone_move::async_clmv!(q, {
599        let rsp = task.await;
600
601        match &mut *q.lock() {
602            QuickResponse::Quick(q) => *q = Some(rsp),
603            QuickResponse::Response(r) => r.respond(rsp),
604        }
605    }));
606
607    let mut q = q.lock();
608    match &mut *q {
609        QuickResponse::Quick(q) if q.is_some() => response_done_var(q.take().unwrap()),
610        _ => {
611            let (responder, response) = response_var();
612            *q = QuickResponse::Response(responder);
613            response
614        }
615    }
616}
617
618/// Create a parallel `task` that blocks awaiting for an IO operation, the `task` starts on the first `.await`.
619///
620/// # Parallel
621///
622/// The `task` runs in the [`blocking`] thread-pool which is optimized for awaiting blocking operations.
623/// If the `task` is computation heavy you should use [`run`] and then `wait` inside that task for the
624/// parts that are blocking.
625///
626/// # Examples
627///
628/// ```
629/// # fn main() { }
630/// # use zng_task as task;
631/// # async fn example() {
632/// task::wait(|| std::fs::read_to_string("file.txt")).await
633/// # ; }
634/// ```
635///
636/// The example reads a file, that is a blocking file IO operation, most of the time is spend waiting for the operating system,
637/// so we offload this to a `wait` task. The task can be `.await` inside a [`run`] task or inside one of the UI tasks
638/// like in a async event handler.
639///
640/// # Async Read/Write
641///
642/// For [`std::io::Read`] and [`std::io::Write`] operations you can also use [`io`] and [`fs`] alternatives when you don't
643/// have or want the full file in memory or when you want to apply multiple operations to the file.
644///
645/// # Panic Propagation
646///
647/// If the `task` panics the panic is resumed in the awaiting thread using [`resume_unwind`]. You
648/// can use [`wait_catch`] to get the panic as an error instead.
649///
650/// [`blocking`]: https://docs.rs/blocking
651/// [`resume_unwind`]: panic::resume_unwind
652pub async fn wait<T, F>(task: F) -> T
653where
654    F: FnOnce() -> T + Send + 'static,
655    T: Send + 'static,
656{
657    match wait_catch(task).await {
658        Ok(r) => r,
659        Err(p) => panic::resume_unwind(p),
660    }
661}
662
663/// Like [`wait`] but catches panics.
664///
665/// This task works the same and has the same utility as [`wait`], except if returns panic messages
666/// as an error instead of propagating the panic.
667///
668/// # Unwind Safety
669///
670/// This function disables the [unwind safety validation], meaning that in case of a panic shared
671/// data can end-up in an invalid, but still memory safe, state. If you are worried about that only use
672/// poisoning mutexes or atomics to mutate shared data or discard all shared data used in the `task`
673/// if this function returns an error.
674///
675/// [unwind safety validation]: std::panic::UnwindSafe
676pub async fn wait_catch<T, F>(task: F) -> PanicResult<T>
677where
678    F: FnOnce() -> T + Send + 'static,
679    T: Send + 'static,
680{
681    let mut ctx = LocalContext::capture();
682    blocking::unblock(move || ctx.with_context(move || panic::catch_unwind(panic::AssertUnwindSafe(task)))).await
683}
684
685/// Fire and forget a [`wait`] task. The `task` starts executing immediately.
686///
687/// # Panic Handling
688///
689/// If the `task` panics the panic message is logged as an error, the panic is otherwise ignored.
690///
691/// # Unwind Safety
692///
693/// This function disables the [unwind safety validation], meaning that in case of a panic shared
694/// data can end-up in an invalid (still memory safe) state. If you are worried about that only use
695/// poisoning mutexes or atomics to mutate shared data or use [`wait_catch`] to detect a panic or [`wait`]
696/// to propagate a panic.
697///
698/// [unwind safety validation]: std::panic::UnwindSafe
699pub fn spawn_wait<F>(task: F)
700where
701    F: FnOnce() + Send + 'static,
702{
703    spawn(async move {
704        if let Err(p) = wait_catch(task).await {
705            tracing::error!("parallel `spawn_wait` task panicked: {}", crate_util::panic_str(&p))
706        }
707    });
708}
709
710/// Like [`spawn_wait`], but the task will send its result to a [`ResponseVar<R>`].
711///
712/// # Cancellation
713///
714/// Dropping the [`ResponseVar<R>`] does not cancel the `task`, it will still run to completion.
715///
716/// # Panic Handling
717///
718/// If the `task` panics the panic is logged as an error and resumed in the response var modify closure.
719pub fn wait_respond<R, F>(task: F) -> ResponseVar<R>
720where
721    R: VarValue,
722    F: FnOnce() -> R + Send + 'static,
723{
724    let (responder, response) = response_var();
725    spawn_wait(move || match panic::catch_unwind(panic::AssertUnwindSafe(task)) {
726        Ok(r) => responder.respond(r),
727        Err(p) => {
728            tracing::error!("panic in `task::wait_respond`: {}", crate_util::panic_str(&p));
729            responder.modify(move |_| panic::resume_unwind(p));
730        }
731    });
732    response
733}
734
735/// Blocks the thread until the `task` future finishes.
736///
737/// This function is useful for implementing async tests, using it in an app will probably cause
738/// the app to stop responding.
739///
740/// The crate [`futures-lite`] is used to execute the task.
741///
742/// # Examples
743///
744/// Test a [`run`] call:
745///
746/// ```
747/// use zng_task as task;
748/// # use zng_unit::*;
749/// # async fn foo(u: u8) -> Result<u8, ()> { task::deadline(1.ms()).await; Ok(u) }
750///
751/// #[test]
752/// # fn __() { }
753/// pub fn run_ok() {
754///     let r = task::block_on(task::run(async { foo(32).await }));
755///
756///     # let value =
757///     r.expect("foo(32) was not Ok");
758///     # assert_eq!(32, value);
759/// }
760/// # run_ok();
761/// ```
762///
763/// [`futures-lite`]: https://docs.rs/futures-lite/
764pub fn block_on<F>(task: impl IntoFuture<IntoFuture = F>) -> F::Output
765where
766    F: Future,
767{
768    futures_lite::future::block_on(task.into_future())
769}
770
771/// Continuous poll the `task` until if finishes.
772///
773/// This function is useful for implementing some async tests only, futures don't expect to be polled
774/// continuously. This function is only available in test builds.
775#[cfg(any(test, doc, feature = "test_util"))]
776pub fn spin_on<F>(task: impl IntoFuture<IntoFuture = F>) -> F::Output
777where
778    F: Future,
779{
780    use std::pin::pin;
781
782    let mut task = pin!(task.into_future());
783    block_on(future_fn(|cx| match task.as_mut().poll(cx) {
784        Poll::Ready(r) => Poll::Ready(r),
785        Poll::Pending => {
786            cx.waker().wake_by_ref();
787            Poll::Pending
788        }
789    }))
790}
791
792/// Executor used in async doc tests.
793///
794/// If `spin` is `true` the [`spin_on`] executor is used with a timeout of 500 milliseconds.
795/// IF `spin` is `false` the [`block_on`] executor is used with a timeout of 5 seconds.
796#[cfg(any(test, doc, feature = "test_util"))]
797pub fn doc_test<F>(spin: bool, task: impl IntoFuture<IntoFuture = F>) -> F::Output
798where
799    F: Future,
800{
801    use zng_unit::TimeUnits;
802
803    if spin {
804        spin_on(with_deadline(task, 500.ms())).expect("async doc-test timeout")
805    } else {
806        block_on(with_deadline(task, 5.secs())).expect("async doc-test timeout")
807    }
808}
809
810/// A future that is [`Pending`] once and wakes the current task.
811///
812/// After the first `.await` the future is always [`Ready`] and on the first `.await` it calls [`wake`].
813///
814/// [`Pending`]: std::task::Poll::Pending
815/// [`Ready`]: std::task::Poll::Ready
816/// [`wake`]: std::task::Waker::wake
817pub async fn yield_now() {
818    struct YieldNowFut(bool);
819    impl Future for YieldNowFut {
820        type Output = ();
821
822        fn poll(mut self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> {
823            if self.0 {
824                Poll::Ready(())
825            } else {
826                self.0 = true;
827                cx.waker().wake_by_ref();
828                Poll::Pending
829            }
830        }
831    }
832
833    YieldNowFut(false).await
834}
835
836/// A future that is [`Pending`] until the `deadline` is reached.
837///
838/// # Examples
839///
840/// Await 5 seconds in a [`spawn`] parallel task:
841///
842/// ```
843/// use zng_task as task;
844/// use zng_unit::*;
845///
846/// task::spawn(async {
847///     println!("waiting 5 seconds..");
848///     task::deadline(5.secs()).await;
849///     println!("5 seconds elapsed.")
850/// });
851/// ```
852///
853/// The future runs on an app provider timer executor, or on the [`futures_timer`] by default.
854///
855/// Note that deadlines from [`Duration`](std::time::Duration) starts *counting* at the moment this function is called,
856/// not at the moment of the first `.await` call.
857///
858/// [`Pending`]: std::task::Poll::Pending
859/// [`futures_timer`]: https://docs.rs/futures-timer
860pub fn deadline(deadline: impl Into<Deadline>) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>> {
861    let deadline = deadline.into();
862    if zng_app_context::LocalContext::current_app().is_some() {
863        DEADLINE_SV.read().0(deadline)
864    } else {
865        default_deadline(deadline)
866    }
867}
868
869app_local! {
870    static DEADLINE_SV: (DeadlineService, bool) = const { (default_deadline, false) };
871}
872
873type DeadlineService = fn(Deadline) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>>;
874
875fn default_deadline(deadline: Deadline) -> Pin<Box<dyn Future<Output = ()> + Send + Sync>> {
876    if let Some(timeout) = deadline.time_left() {
877        Box::pin(futures_timer::Delay::new(timeout))
878    } else {
879        Box::pin(std::future::ready(()))
880    }
881}
882
883/// Deadline APP integration.
884#[expect(non_camel_case_types)]
885pub struct DEADLINE_APP;
886
887impl DEADLINE_APP {
888    /// Called by the app implementer to setup the [`deadline`] executor.
889    ///
890    /// If no app calls this the [`futures_timer`] executor is used.
891    ///
892    /// [`futures_timer`]: https://docs.rs/futures-timer
893    ///
894    /// # Panics
895    ///
896    /// Panics if called more than once for the same app.
897    pub fn init_deadline_service(&self, service: DeadlineService) {
898        let (prev, already_set) = mem::replace(&mut *DEADLINE_SV.write(), (service, true));
899        if already_set {
900            *DEADLINE_SV.write() = (prev, true);
901            panic!("deadline service already inited for this app");
902        }
903    }
904}
905
906/// Implements a [`Future`] from a closure.
907///
908/// # Examples
909///
910/// A future that is ready with a closure returns `Some(R)`.
911///
912/// ```
913/// use std::task::Poll;
914/// use zng_task as task;
915///
916/// async fn ready_some<R>(mut closure: impl FnMut() -> Option<R>) -> R {
917///     task::future_fn(|cx| match closure() {
918///         Some(r) => Poll::Ready(r),
919///         None => Poll::Pending,
920///     })
921///     .await
922/// }
923/// ```
924pub async fn future_fn<T, F>(fn_: F) -> T
925where
926    F: FnMut(&mut std::task::Context) -> Poll<T>,
927{
928    struct PollFn<F>(F);
929    impl<F> Unpin for PollFn<F> {}
930    impl<T, F: FnMut(&mut std::task::Context<'_>) -> Poll<T>> Future for PollFn<F> {
931        type Output = T;
932
933        fn poll(mut self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<Self::Output> {
934            (self.0)(cx)
935        }
936    }
937    PollFn(fn_).await
938}
939
940/// Error when [`with_deadline`] reach a time limit before a task finishes.
941#[derive(Debug, Clone, Copy)]
942#[non_exhaustive]
943pub struct DeadlineError {}
944impl fmt::Display for DeadlineError {
945    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
946        write!(f, "reached deadline")
947    }
948}
949impl std::error::Error for DeadlineError {}
950
951/// Add a [`deadline`] to a future.
952///
953/// Returns the `fut` output or [`DeadlineError`] if the deadline elapses first.
954pub async fn with_deadline<O, F: Future<Output = O>>(
955    fut: impl IntoFuture<IntoFuture = F>,
956    deadline: impl Into<Deadline>,
957) -> Result<F::Output, DeadlineError> {
958    let deadline = deadline.into();
959    any!(async { Ok(fut.await) }, async {
960        self::deadline(deadline).await;
961        Err(DeadlineError {})
962    })
963    .await
964}
965
966/// <span data-del-macro-root></span> A future that *zips* other futures.
967///
968/// The macro input is a comma separated list of future expressions. The macro output is a future
969/// that when ".awaited" produces a tuple of results in the same order as the inputs.
970///
971/// At least one input future is required and any number of futures is accepted. For more than
972/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
973/// some IDEs.
974///
975/// Each input must implement [`IntoFuture`]. Note that each input must be known at compile time, use the [`fn@all`] async
976/// function to await on all futures in a dynamic list of futures.
977///
978/// # Examples
979///
980/// Await for three different futures to complete:
981///
982/// ```
983/// use zng_task as task;
984///
985/// # task::doc_test(false, async {
986/// let (a, b, c) = task::all!(task::run(async { 'a' }), task::wait(|| "b"), async { b"c" }).await;
987/// # });
988/// ```
989#[macro_export]
990macro_rules! all {
991    ($fut0:expr $(,)?) => { $crate::__all! { fut0: $fut0; } };
992    ($fut0:expr, $fut1:expr $(,)?) => {
993        $crate::__all! {
994            fut0: $fut0;
995            fut1: $fut1;
996        }
997    };
998    ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
999        $crate::__all! {
1000            fut0: $fut0;
1001            fut1: $fut1;
1002            fut2: $fut2;
1003        }
1004    };
1005    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1006        $crate::__all! {
1007            fut0: $fut0;
1008            fut1: $fut1;
1009            fut2: $fut2;
1010            fut3: $fut3;
1011        }
1012    };
1013    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1014        $crate::__all! {
1015            fut0: $fut0;
1016            fut1: $fut1;
1017            fut2: $fut2;
1018            fut3: $fut3;
1019            fut4: $fut4;
1020        }
1021    };
1022    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1023        $crate::__all! {
1024            fut0: $fut0;
1025            fut1: $fut1;
1026            fut2: $fut2;
1027            fut3: $fut3;
1028            fut4: $fut4;
1029            fut5: $fut5;
1030        }
1031    };
1032    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1033        $crate::__all! {
1034            fut0: $fut0;
1035            fut1: $fut1;
1036            fut2: $fut2;
1037            fut3: $fut3;
1038            fut4: $fut4;
1039            fut5: $fut5;
1040            fut6: $fut6;
1041        }
1042    };
1043    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1044        $crate::__all! {
1045            fut0: $fut0;
1046            fut1: $fut1;
1047            fut2: $fut2;
1048            fut3: $fut3;
1049            fut4: $fut4;
1050            fut5: $fut5;
1051            fut6: $fut6;
1052            fut7: $fut7;
1053        }
1054    };
1055    ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__all; $($fut),+ } }
1056}
1057
1058#[doc(hidden)]
1059#[macro_export]
1060macro_rules! __all {
1061    ($($ident:ident: $fut:expr;)+) => {
1062        {
1063            $(let mut $ident = $crate::FutureOrOutput::Future(std::future::IntoFuture::into_future($fut));)+
1064            $crate::future_fn(move |cx| {
1065                use std::task::Poll;
1066
1067                let mut pending = false;
1068
1069                $(
1070                    if let $crate::FutureOrOutput::Future(fut) = &mut $ident {
1071                        // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1072                        // Future::poll call, so it will not move.
1073                        let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1074                        if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1075                            $ident = $crate::FutureOrOutput::Output(r);
1076                        } else {
1077                            pending = true;
1078                        }
1079                    }
1080                )+
1081
1082                if pending {
1083                    Poll::Pending
1084                } else {
1085                    Poll::Ready(($($ident.take_output()),+))
1086                }
1087            })
1088        }
1089    }
1090}
1091
1092#[doc(hidden)]
1093pub enum FutureOrOutput<F: Future> {
1094    Future(F),
1095    Output(F::Output),
1096    Taken,
1097}
1098impl<F: Future> FutureOrOutput<F> {
1099    pub fn take_output(&mut self) -> F::Output {
1100        match std::mem::replace(self, Self::Taken) {
1101            FutureOrOutput::Output(o) => o,
1102            _ => unreachable!(),
1103        }
1104    }
1105}
1106
1107/// A future that awaits on all `futures` at the same time and returns all results when all futures are ready.
1108///
1109/// This is the dynamic version of [`all!`].
1110pub async fn all<F: IntoFuture>(futures: impl IntoIterator<Item = F>) -> Vec<F::Output> {
1111    let mut futures: Vec<_> = futures.into_iter().map(|f| FutureOrOutput::Future(f.into_future())).collect();
1112    future_fn(move |cx| {
1113        let mut pending = false;
1114        for input in &mut futures {
1115            if let FutureOrOutput::Future(fut) = input {
1116                // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1117                // Future::poll call, so it will not move.
1118                let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1119                if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1120                    *input = FutureOrOutput::Output(r);
1121                } else {
1122                    pending = true;
1123                }
1124            }
1125        }
1126
1127        if pending {
1128            Poll::Pending
1129        } else {
1130            Poll::Ready(futures.iter_mut().map(FutureOrOutput::take_output).collect())
1131        }
1132    })
1133    .await
1134}
1135
1136/// <span data-del-macro-root></span> A future that awaits for the first future that is ready.
1137///
1138/// The macro input is comma separated list of future expressions, the futures must
1139/// all have the same output type. The macro output is a future that when ".awaited" produces
1140/// a single output type instance returned by the first input future that completes.
1141///
1142/// At least one input future is required and any number of futures is accepted. For more than
1143/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1144/// some IDEs.
1145///
1146/// If two futures are ready at the same time the result of the first future in the input list is used.
1147/// After one future is ready the other futures are not polled again and are dropped.
1148///
1149/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1150/// known at compile time, use the [`fn@any`] async function to await on all futures in a dynamic list of futures.
1151///
1152/// # Examples
1153///
1154/// Await for the first of three futures to complete:
1155///
1156/// ```
1157/// use zng_task as task;
1158/// use zng_unit::*;
1159///
1160/// # task::doc_test(false, async {
1161/// let r = task::any!(
1162///     task::run(async {
1163///         task::deadline(300.ms()).await;
1164///         'a'
1165///     }),
1166///     task::wait(|| 'b'),
1167///     async {
1168///         task::deadline(300.ms()).await;
1169///         'c'
1170///     }
1171/// )
1172/// .await;
1173///
1174/// assert_eq!('b', r);
1175/// # });
1176/// ```
1177#[macro_export]
1178macro_rules! any {
1179    ($fut0:expr $(,)?) => { $crate::__any! { fut0: $fut0; } };
1180    ($fut0:expr, $fut1:expr $(,)?) => {
1181        $crate::__any! {
1182            fut0: $fut0;
1183            fut1: $fut1;
1184        }
1185    };
1186    ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1187        $crate::__any! {
1188            fut0: $fut0;
1189            fut1: $fut1;
1190            fut2: $fut2;
1191        }
1192    };
1193    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1194        $crate::__any! {
1195            fut0: $fut0;
1196            fut1: $fut1;
1197            fut2: $fut2;
1198            fut3: $fut3;
1199        }
1200    };
1201    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1202        $crate::__any! {
1203            fut0: $fut0;
1204            fut1: $fut1;
1205            fut2: $fut2;
1206            fut3: $fut3;
1207            fut4: $fut4;
1208        }
1209    };
1210    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1211        $crate::__any! {
1212            fut0: $fut0;
1213            fut1: $fut1;
1214            fut2: $fut2;
1215            fut3: $fut3;
1216            fut4: $fut4;
1217            fut5: $fut5;
1218        }
1219    };
1220    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1221        $crate::__any! {
1222            fut0: $fut0;
1223            fut1: $fut1;
1224            fut2: $fut2;
1225            fut3: $fut3;
1226            fut4: $fut4;
1227            fut5: $fut5;
1228            fut6: $fut6;
1229        }
1230    };
1231    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1232        $crate::__any! {
1233            fut0: $fut0;
1234            fut1: $fut1;
1235            fut2: $fut2;
1236            fut3: $fut3;
1237            fut4: $fut4;
1238            fut5: $fut5;
1239            fut6: $fut6;
1240            fut7: $fut7;
1241        }
1242    };
1243    ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__any; $($fut),+ } }
1244}
1245#[doc(hidden)]
1246#[macro_export]
1247macro_rules! __any {
1248    ($($ident:ident: $fut:expr;)+) => {
1249        {
1250            $(let mut $ident = std::future::IntoFuture::into_future($fut);)+
1251            $crate::future_fn(move |cx| {
1252                use std::task::Poll;
1253                $(
1254                    // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1255                    // Future::poll call, so it will not move.
1256                    let mut $ident = unsafe { std::pin::Pin::new_unchecked(&mut $ident) };
1257                    if let Poll::Ready(r) = $ident.as_mut().poll(cx) {
1258                        return Poll::Ready(r)
1259                    }
1260                )+
1261
1262                Poll::Pending
1263            })
1264        }
1265    }
1266}
1267#[doc(hidden)]
1268pub use zng_task_proc_macros::task_any_all as __proc_any_all;
1269
1270/// A future that awaits on all `futures` at the same time and returns the first result when the first future is ready.
1271///
1272/// This is the dynamic version of [`any!`].
1273pub async fn any<F: IntoFuture>(futures: impl IntoIterator<Item = F>) -> F::Output {
1274    let mut futures: Vec<_> = futures.into_iter().map(IntoFuture::into_future).collect();
1275    future_fn(move |cx| {
1276        for fut in &mut futures {
1277            // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1278            // Future::poll call, so it will not move.
1279            let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1280            if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1281                return Poll::Ready(r);
1282            }
1283        }
1284        Poll::Pending
1285    })
1286    .await
1287}
1288
1289/// <span data-del-macro-root></span> A future that waits for the first future that is ready with an `Ok(T)` result.
1290///
1291/// The macro input is comma separated list of future expressions, the futures must
1292/// all have the same output `Result<T, E>` type, but each can have a different `E`. The macro output is a future
1293/// that when ".awaited" produces a single output of type `Result<T, (E0, E1, ..)>` that is `Ok(T)` if any of the futures
1294/// is `Ok(T)` or is `Err((E0, E1, ..))` is all futures are `Err`.
1295///
1296/// At least one input future is required and any number of futures is accepted. For more than
1297/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1298/// some IDEs.
1299///
1300/// If two futures are ready and `Ok(T)` at the same time the result of the first future in the input list is used.
1301/// After one future is ready and `Ok(T)` the other futures are not polled again and are dropped. After a future
1302/// is ready and `Err(E)` it is also not polled again and dropped.
1303///
1304/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1305/// known at compile time, use the [`fn@any_ok`] async function to await on all futures in a dynamic list of futures.
1306///
1307/// # Examples
1308///
1309/// Await for the first of three futures to complete with `Ok`:
1310///
1311/// ```
1312/// use zng_task as task;
1313/// # #[derive(Debug, PartialEq)]
1314/// # pub struct FooError;
1315/// # task::doc_test(false, async {
1316/// let r = task::any_ok!(
1317///     task::run(async { Err::<char, _>("error") }),
1318///     task::wait(|| Ok::<_, FooError>('b')),
1319///     async { Err::<char, _>(FooError) }
1320/// )
1321/// .await;
1322///
1323/// assert_eq!(Ok('b'), r);
1324/// # });
1325/// ```
1326#[macro_export]
1327macro_rules! any_ok {
1328    ($fut0:expr $(,)?) => { $crate::__any_ok! { fut0: $fut0; } };
1329    ($fut0:expr, $fut1:expr $(,)?) => {
1330        $crate::__any_ok! {
1331            fut0: $fut0;
1332            fut1: $fut1;
1333        }
1334    };
1335    ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1336        $crate::__any_ok! {
1337            fut0: $fut0;
1338            fut1: $fut1;
1339            fut2: $fut2;
1340        }
1341    };
1342    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1343        $crate::__any_ok! {
1344            fut0: $fut0;
1345            fut1: $fut1;
1346            fut2: $fut2;
1347            fut3: $fut3;
1348        }
1349    };
1350    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1351        $crate::__any_ok! {
1352            fut0: $fut0;
1353            fut1: $fut1;
1354            fut2: $fut2;
1355            fut3: $fut3;
1356            fut4: $fut4;
1357        }
1358    };
1359    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1360        $crate::__any_ok! {
1361            fut0: $fut0;
1362            fut1: $fut1;
1363            fut2: $fut2;
1364            fut3: $fut3;
1365            fut4: $fut4;
1366            fut5: $fut5;
1367        }
1368    };
1369    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1370        $crate::__any_ok! {
1371            fut0: $fut0;
1372            fut1: $fut1;
1373            fut2: $fut2;
1374            fut3: $fut3;
1375            fut4: $fut4;
1376            fut5: $fut5;
1377            fut6: $fut6;
1378        }
1379    };
1380    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1381        $crate::__any_ok! {
1382            fut0: $fut0;
1383            fut1: $fut1;
1384            fut2: $fut2;
1385            fut3: $fut3;
1386            fut4: $fut4;
1387            fut5: $fut5;
1388            fut6: $fut6;
1389            fut7: $fut7;
1390        }
1391    };
1392    ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__any_ok; $($fut),+ } }
1393}
1394
1395#[doc(hidden)]
1396#[macro_export]
1397macro_rules! __any_ok {
1398    ($($ident:ident: $fut: expr;)+) => {
1399        {
1400            $(let mut $ident = $crate::FutureOrOutput::Future(std::future::IntoFuture::into_future($fut));)+
1401            $crate::future_fn(move |cx| {
1402                use std::task::Poll;
1403
1404                let mut pending = false;
1405
1406                $(
1407                    if let $crate::FutureOrOutput::Future(fut) = &mut $ident {
1408                        // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1409                        // Future::poll call, so it will not move.
1410                        let mut fut = unsafe { std::pin::Pin::new_unchecked(fut) };
1411                        if let Poll::Ready(r) = fut.as_mut().poll(cx) {
1412                            match r {
1413                                Ok(r) => return Poll::Ready(Ok(r)),
1414                                Err(e) => {
1415                                    $ident = $crate::FutureOrOutput::Output(Err(e));
1416                                }
1417                            }
1418                        } else {
1419                            pending = true;
1420                        }
1421                    }
1422                )+
1423
1424                if pending {
1425                    Poll::Pending
1426                } else {
1427                    Poll::Ready(Err((
1428                        $($ident.take_output().unwrap_err()),+
1429                    )))
1430                }
1431            })
1432        }
1433    }
1434}
1435
1436/// A future that awaits on all `futures` at the same time and returns when any future is `Ok(_)` or all are `Err(_)`.
1437///
1438/// This is the dynamic version of [`all_some!`].
1439pub async fn any_ok<Ok, Err, F: IntoFuture<Output = Result<Ok, Err>>>(futures: impl IntoIterator<Item = F>) -> Result<Ok, Vec<Err>> {
1440    let mut futures: Vec<_> = futures.into_iter().map(|f| FutureOrOutput::Future(f.into_future())).collect();
1441    future_fn(move |cx| {
1442        let mut pending = false;
1443        for input in &mut futures {
1444            if let FutureOrOutput::Future(fut) = input {
1445                // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1446                // Future::poll call, so it will not move.
1447                let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1448                if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1449                    match r {
1450                        Ok(r) => return Poll::Ready(Ok(r)),
1451                        Err(e) => *input = FutureOrOutput::Output(Err(e)),
1452                    }
1453                } else {
1454                    pending = true;
1455                }
1456            }
1457        }
1458
1459        if pending {
1460            Poll::Pending
1461        } else {
1462            Poll::Ready(Err(futures
1463                .iter_mut()
1464                .map(|f| match f.take_output() {
1465                    Ok(_) => unreachable!(),
1466                    Err(e) => e,
1467                })
1468                .collect()))
1469        }
1470    })
1471    .await
1472}
1473
1474/// <span data-del-macro-root></span> A future that is ready when any of the futures is ready and `Some(T)`.
1475///
1476/// The macro input is comma separated list of future expressions, the futures must
1477/// all have the same output `Option<T>` type. The macro output is a future that when ".awaited" produces
1478/// a single output type instance returned by the first input future that completes with a `Some`.
1479/// If all futures complete with a `None` the output is `None`.
1480///
1481/// At least one input future is required and any number of futures is accepted. For more than
1482/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1483/// some IDEs.
1484///
1485/// If two futures are ready and `Some(T)` at the same time the result of the first future in the input list is used.
1486/// After one future is ready and `Some(T)` the other futures are not polled again and are dropped. After a future
1487/// is ready and `None` it is also not polled again and dropped.
1488///
1489/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1490/// known at compile time, use the [`fn@any_some`] async function to await on all futures in a dynamic list of futures.
1491///
1492/// # Examples
1493///
1494/// Await for the first of three futures to complete with `Some`:
1495///
1496/// ```
1497/// use zng_task as task;
1498/// # task::doc_test(false, async {
1499/// let r = task::any_some!(task::run(async { None::<char> }), task::wait(|| Some('b')), async { None::<char> }).await;
1500///
1501/// assert_eq!(Some('b'), r);
1502/// # });
1503/// ```
1504#[macro_export]
1505macro_rules! any_some {
1506    ($fut0:expr $(,)?) => { $crate::__any_some! { fut0: $fut0; } };
1507    ($fut0:expr, $fut1:expr $(,)?) => {
1508        $crate::__any_some! {
1509            fut0: $fut0;
1510            fut1: $fut1;
1511        }
1512    };
1513    ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1514        $crate::__any_some! {
1515            fut0: $fut0;
1516            fut1: $fut1;
1517            fut2: $fut2;
1518        }
1519    };
1520    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1521        $crate::__any_some! {
1522            fut0: $fut0;
1523            fut1: $fut1;
1524            fut2: $fut2;
1525            fut3: $fut3;
1526        }
1527    };
1528    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1529        $crate::__any_some! {
1530            fut0: $fut0;
1531            fut1: $fut1;
1532            fut2: $fut2;
1533            fut3: $fut3;
1534            fut4: $fut4;
1535        }
1536    };
1537    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1538        $crate::__any_some! {
1539            fut0: $fut0;
1540            fut1: $fut1;
1541            fut2: $fut2;
1542            fut3: $fut3;
1543            fut4: $fut4;
1544            fut5: $fut5;
1545        }
1546    };
1547    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1548        $crate::__any_some! {
1549            fut0: $fut0;
1550            fut1: $fut1;
1551            fut2: $fut2;
1552            fut3: $fut3;
1553            fut4: $fut4;
1554            fut5: $fut5;
1555            fut6: $fut6;
1556        }
1557    };
1558    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1559        $crate::__any_some! {
1560            fut0: $fut0;
1561            fut1: $fut1;
1562            fut2: $fut2;
1563            fut3: $fut3;
1564            fut4: $fut4;
1565            fut5: $fut5;
1566            fut6: $fut6;
1567            fut7: $fut7;
1568        }
1569    };
1570    ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__any_some; $($fut),+ } }
1571}
1572
1573#[doc(hidden)]
1574#[macro_export]
1575macro_rules! __any_some {
1576    ($($ident:ident: $fut: expr;)+) => {
1577        {
1578            $(let mut $ident = Some(std::future::IntoFuture::into_future($fut));)+
1579            $crate::future_fn(move |cx| {
1580                use std::task::Poll;
1581
1582                let mut pending = false;
1583
1584                $(
1585                    if let Some(fut) = $ident.as_mut() {
1586                        // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1587                        // Future::poll call, so it will not move.
1588                        let mut fut = unsafe { std::pin::Pin::new_unchecked(fut) };
1589                        if let Poll::Ready(r) = fut.as_mut().poll(cx) {
1590                            if let Some(r) = r {
1591                                return Poll::Ready(Some(r));
1592                            }
1593                            $ident = None;
1594                        } else {
1595                            pending = true;
1596                        }
1597                    }
1598                )+
1599
1600                if pending {
1601                    Poll::Pending
1602                } else {
1603                    Poll::Ready(None)
1604                }
1605            })
1606        }
1607    }
1608}
1609
1610/// A future that awaits on all `futures` at the same time and returns when any future is `Some(_)` or all are `None`.
1611///
1612/// This is the dynamic version of [`all_some!`].
1613pub async fn any_some<Some, F: IntoFuture<Output = Option<Some>>>(futures: impl IntoIterator<Item = F>) -> Option<Some> {
1614    let mut futures: Vec<_> = futures.into_iter().map(|f| Some(f.into_future())).collect();
1615    future_fn(move |cx| {
1616        let mut pending = false;
1617        for input in &mut futures {
1618            if let Some(fut) = input {
1619                // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1620                // Future::poll call, so it will not move.
1621                let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1622                if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1623                    match r {
1624                        Some(r) => return Poll::Ready(Some(r)),
1625                        None => *input = None,
1626                    }
1627                } else {
1628                    pending = true;
1629                }
1630            }
1631        }
1632
1633        if pending { Poll::Pending } else { Poll::Ready(None) }
1634    })
1635    .await
1636}
1637
1638/// <span data-del-macro-root></span> A future that is ready when all futures are ready with an `Ok(T)` result or
1639/// any future is ready with an `Err(E)` result.
1640///
1641/// The output type is `Result<(T0, T1, ..), E>`, the `Ok` type is a tuple with all the `Ok` values, the error
1642/// type is the first error encountered, the input futures must have the same `Err` type but can have different
1643/// `Ok` types.
1644///
1645/// At least one input future is required and any number of futures is accepted. For more than
1646/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1647/// some IDEs.
1648///
1649/// If two futures are ready and `Err(E)` at the same time the result of the first future in the input list is used.
1650/// After one future is ready and `Err(T)` the other futures are not polled again and are dropped. After a future
1651/// is ready it is also not polled again and dropped.
1652///
1653/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1654/// known at compile time, use the [`fn@all_ok`] async function to await on all futures in a dynamic list of futures.
1655///
1656/// # Examples
1657///
1658/// Await for the first of three futures to complete with `Ok(T)`:
1659///
1660/// ```
1661/// use zng_task as task;
1662/// # #[derive(Debug, PartialEq)]
1663/// # struct FooError;
1664/// # task::doc_test(false, async {
1665/// let r = task::all_ok!(
1666///     task::run(async { Ok::<_, FooError>('a') }),
1667///     task::wait(|| Ok::<_, FooError>('b')),
1668///     async { Ok::<_, FooError>('c') }
1669/// )
1670/// .await;
1671///
1672/// assert_eq!(Ok(('a', 'b', 'c')), r);
1673/// # });
1674/// ```
1675///
1676/// And in if any completes with `Err(E)`:
1677///
1678/// ```
1679/// use zng_task as task;
1680/// # #[derive(Debug, PartialEq)]
1681/// # struct FooError;
1682/// # task::doc_test(false, async {
1683/// let r = task::all_ok!(task::run(async { Ok('a') }), task::wait(|| Err::<char, _>(FooError)), async {
1684///     Ok('c')
1685/// })
1686/// .await;
1687///
1688/// assert_eq!(Err(FooError), r);
1689/// # });
1690/// ```
1691#[macro_export]
1692macro_rules! all_ok {
1693    ($fut0:expr $(,)?) => { $crate::__all_ok! { fut0: $fut0; } };
1694    ($fut0:expr, $fut1:expr $(,)?) => {
1695        $crate::__all_ok! {
1696            fut0: $fut0;
1697            fut1: $fut1;
1698        }
1699    };
1700    ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1701        $crate::__all_ok! {
1702            fut0: $fut0;
1703            fut1: $fut1;
1704            fut2: $fut2;
1705        }
1706    };
1707    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1708        $crate::__all_ok! {
1709            fut0: $fut0;
1710            fut1: $fut1;
1711            fut2: $fut2;
1712            fut3: $fut3;
1713        }
1714    };
1715    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1716        $crate::__all_ok! {
1717            fut0: $fut0;
1718            fut1: $fut1;
1719            fut2: $fut2;
1720            fut3: $fut3;
1721            fut4: $fut4;
1722        }
1723    };
1724    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1725        $crate::__all_ok! {
1726            fut0: $fut0;
1727            fut1: $fut1;
1728            fut2: $fut2;
1729            fut3: $fut3;
1730            fut4: $fut4;
1731            fut5: $fut5;
1732        }
1733    };
1734    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1735        $crate::__all_ok! {
1736            fut0: $fut0;
1737            fut1: $fut1;
1738            fut2: $fut2;
1739            fut3: $fut3;
1740            fut4: $fut4;
1741            fut5: $fut5;
1742            fut6: $fut6;
1743        }
1744    };
1745    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1746        $crate::__all_ok! {
1747            fut0: $fut0;
1748            fut1: $fut1;
1749            fut2: $fut2;
1750            fut3: $fut3;
1751            fut4: $fut4;
1752            fut5: $fut5;
1753            fut6: $fut6;
1754            fut7: $fut7;
1755        }
1756    };
1757    ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__all_ok; $($fut),+ } }
1758}
1759
1760#[doc(hidden)]
1761#[macro_export]
1762macro_rules! __all_ok {
1763    ($($ident:ident: $fut: expr;)+) => {
1764        {
1765            $(let mut $ident = $crate::FutureOrOutput::Future(std::future::IntoFuture::into_future($fut));)+
1766            $crate::future_fn(move |cx| {
1767                use std::task::Poll;
1768
1769                let mut pending = false;
1770
1771                $(
1772                    if let $crate::FutureOrOutput::Future(fut) = &mut $ident {
1773                        // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1774                        // Future::poll call, so it will not move.
1775                        let mut fut = unsafe { std::pin::Pin::new_unchecked(fut) };
1776                        if let Poll::Ready(r) = fut.as_mut().poll(cx) {
1777                            match r {
1778                                Ok(r) => {
1779                                    $ident = $crate::FutureOrOutput::Output(Ok(r))
1780                                },
1781                                Err(e) => return Poll::Ready(Err(e)),
1782                            }
1783                        } else {
1784                            pending = true;
1785                        }
1786                    }
1787                )+
1788
1789                if pending {
1790                    Poll::Pending
1791                } else {
1792                    Poll::Ready(Ok((
1793                        $($ident.take_output().unwrap()),+
1794                    )))
1795                }
1796            })
1797        }
1798    }
1799}
1800
1801/// A future that awaits on all `futures` at the same time and returns when all futures are `Ok(_)` or any future is `Err(_)`.
1802///
1803/// This is the dynamic version of [`all_ok!`].
1804pub async fn all_ok<Ok, Err, F: IntoFuture<Output = Result<Ok, Err>>>(futures: impl IntoIterator<Item = F>) -> Result<Vec<Ok>, Err> {
1805    let mut futures: Vec<_> = futures.into_iter().map(|f| FutureOrOutput::Future(f.into_future())).collect();
1806    future_fn(move |cx| {
1807        let mut pending = false;
1808        for input in &mut futures {
1809            if let FutureOrOutput::Future(fut) = input {
1810                // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1811                // Future::poll call, so it will not move.
1812                let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1813                if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1814                    match r {
1815                        Ok(r) => *input = FutureOrOutput::Output(Ok(r)),
1816                        Err(e) => return Poll::Ready(Err(e)),
1817                    }
1818                } else {
1819                    pending = true;
1820                }
1821            }
1822        }
1823
1824        if pending {
1825            Poll::Pending
1826        } else {
1827            Poll::Ready(Ok(futures
1828                .iter_mut()
1829                .map(|f| f.take_output().unwrap_or_else(|_| unreachable!()))
1830                .collect()))
1831        }
1832    })
1833    .await
1834}
1835
1836/// <span data-del-macro-root></span> A future that is ready when all futures are ready with `Some(T)` or when any
1837/// is future ready with `None`.
1838///
1839/// The macro input is comma separated list of future expressions, the futures must
1840/// all have the `Option<T>` output type, but each can have a different `T`. The macro output is a future that when ".awaited"
1841/// produces `Some<(T0, T1, ..)>` if all futures where `Some(T)` or `None` if any of the futures where `None`.
1842///
1843/// At least one input future is required and any number of futures is accepted. For more than
1844/// eight futures a proc-macro is used which may cause code auto-complete to stop working in
1845/// some IDEs.
1846///
1847/// After one future is ready and `None` the other futures are not polled again and are dropped. After a future
1848/// is ready it is also not polled again and dropped.
1849///
1850/// Each input must implement [`IntoFuture`] with the same `Output` type. Note that each input must be
1851/// known at compile time, use the [`fn@all_some`] async function to await on all futures in a dynamic list of futures.
1852///
1853/// # Examples
1854///
1855/// Await for the first of three futures to complete with `Some`:
1856///
1857/// ```
1858/// use zng_task as task;
1859/// # task::doc_test(false, async {
1860/// let r = task::all_some!(task::run(async { Some('a') }), task::wait(|| Some('b')), async { Some('c') }).await;
1861///
1862/// assert_eq!(Some(('a', 'b', 'c')), r);
1863/// # });
1864/// ```
1865///
1866/// Completes with `None` if any future completes with `None`:
1867///
1868/// ```
1869/// # use zng_task as task;
1870/// # task::doc_test(false, async {
1871/// let r = task::all_some!(task::run(async { Some('a') }), task::wait(|| None::<char>), async { Some('b') }).await;
1872///
1873/// assert_eq!(None, r);
1874/// # });
1875/// ```
1876#[macro_export]
1877macro_rules! all_some {
1878    ($fut0:expr $(,)?) => { $crate::__all_some! { fut0: $fut0; } };
1879    ($fut0:expr, $fut1:expr $(,)?) => {
1880        $crate::__all_some! {
1881            fut0: $fut0;
1882            fut1: $fut1;
1883        }
1884    };
1885    ($fut0:expr, $fut1:expr, $fut2:expr $(,)?) => {
1886        $crate::__all_some! {
1887            fut0: $fut0;
1888            fut1: $fut1;
1889            fut2: $fut2;
1890        }
1891    };
1892    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr $(,)?) => {
1893        $crate::__all_some! {
1894            fut0: $fut0;
1895            fut1: $fut1;
1896            fut2: $fut2;
1897            fut3: $fut3;
1898        }
1899    };
1900    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr $(,)?) => {
1901        $crate::__all_some! {
1902            fut0: $fut0;
1903            fut1: $fut1;
1904            fut2: $fut2;
1905            fut3: $fut3;
1906            fut4: $fut4;
1907        }
1908    };
1909    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr $(,)?) => {
1910        $crate::__all_some! {
1911            fut0: $fut0;
1912            fut1: $fut1;
1913            fut2: $fut2;
1914            fut3: $fut3;
1915            fut4: $fut4;
1916            fut5: $fut5;
1917        }
1918    };
1919    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr $(,)?) => {
1920        $crate::__all_some! {
1921            fut0: $fut0;
1922            fut1: $fut1;
1923            fut2: $fut2;
1924            fut3: $fut3;
1925            fut4: $fut4;
1926            fut5: $fut5;
1927            fut6: $fut6;
1928        }
1929    };
1930    ($fut0:expr, $fut1:expr, $fut2:expr, $fut3:expr, $fut4:expr, $fut5:expr, $fut6:expr, $fut7:expr $(,)?) => {
1931        $crate::__all_some! {
1932            fut0: $fut0;
1933            fut1: $fut1;
1934            fut2: $fut2;
1935            fut3: $fut3;
1936            fut4: $fut4;
1937            fut5: $fut5;
1938            fut6: $fut6;
1939            fut7: $fut7;
1940        }
1941    };
1942    ($($fut:expr),+ $(,)?) => { $crate::__proc_any_all!{ $crate::__all_some; $($fut),+ } }
1943}
1944
1945#[doc(hidden)]
1946#[macro_export]
1947macro_rules! __all_some {
1948    ($($ident:ident: $fut: expr;)+) => {
1949        {
1950            $(let mut $ident = $crate::FutureOrOutput::Future(std::future::IntoFuture::into_future($fut));)+
1951            $crate::future_fn(move |cx| {
1952                use std::task::Poll;
1953
1954                let mut pending = false;
1955
1956                $(
1957                    if let $crate::FutureOrOutput::Future(fut) = &mut $ident {
1958                        // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1959                        // Future::poll call, so it will not move.
1960                        let mut fut = unsafe { std::pin::Pin::new_unchecked(fut) };
1961                        if let Poll::Ready(r) = fut.as_mut().poll(cx) {
1962                            if r.is_none() {
1963                                return Poll::Ready(None);
1964                            }
1965
1966                            $ident = $crate::FutureOrOutput::Output(r);
1967                        } else {
1968                            pending = true;
1969                        }
1970                    }
1971                )+
1972
1973                if pending {
1974                    Poll::Pending
1975                } else {
1976                    Poll::Ready(Some((
1977                        $($ident.take_output().unwrap()),+
1978                    )))
1979                }
1980            })
1981        }
1982    }
1983}
1984
1985/// A future that awaits on all `futures` at the same time and returns when all futures are `Some(_)` or any future is `None`.
1986///
1987/// This is the dynamic version of [`all_some!`].
1988pub async fn all_some<Some, F: IntoFuture<Output = Option<Some>>>(futures: impl IntoIterator<Item = F>) -> Option<Vec<Some>> {
1989    let mut futures: Vec<_> = futures.into_iter().map(|f| FutureOrOutput::Future(f.into_future())).collect();
1990    future_fn(move |cx| {
1991        let mut pending = false;
1992        for input in &mut futures {
1993            if let FutureOrOutput::Future(fut) = input {
1994                // SAFETY: the closure owns $ident and is an exclusive borrow inside a
1995                // Future::poll call, so it will not move.
1996                let mut fut_mut = unsafe { std::pin::Pin::new_unchecked(fut) };
1997                if let Poll::Ready(r) = fut_mut.as_mut().poll(cx) {
1998                    match r {
1999                        Some(r) => *input = FutureOrOutput::Output(Some(r)),
2000                        None => return Poll::Ready(None),
2001                    }
2002                } else {
2003                    pending = true;
2004                }
2005            }
2006        }
2007
2008        if pending {
2009            Poll::Pending
2010        } else {
2011            Poll::Ready(Some(futures.iter_mut().map(|f| f.take_output().unwrap()).collect()))
2012        }
2013    })
2014    .await
2015}
2016
2017/// A future that will await until [`set`] is called.
2018///
2019/// # Examples
2020///
2021/// Spawns a parallel task that only writes to stdout after the main thread sets the signal:
2022///
2023/// ```
2024/// use zng_clone_move::async_clmv;
2025/// use zng_task::{self as task, *};
2026///
2027/// let signal = SignalOnce::default();
2028///
2029/// task::spawn(async_clmv!(signal, {
2030///     signal.await;
2031///     println!("After Signal!");
2032/// }));
2033///
2034/// signal.set();
2035/// ```
2036///
2037/// [`set`]: SignalOnce::set
2038#[derive(Default, Clone)]
2039pub struct SignalOnce(Arc<SignalInner>);
2040impl fmt::Debug for SignalOnce {
2041    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2042        write!(f, "SignalOnce({})", self.is_set())
2043    }
2044}
2045impl PartialEq for SignalOnce {
2046    fn eq(&self, other: &Self) -> bool {
2047        Arc::ptr_eq(&self.0, &other.0)
2048    }
2049}
2050impl Eq for SignalOnce {}
2051impl Hash for SignalOnce {
2052    fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
2053        Arc::as_ptr(&self.0).hash(state)
2054    }
2055}
2056impl SignalOnce {
2057    /// New unsigned.
2058    pub fn new() -> Self {
2059        Self::default()
2060    }
2061
2062    /// New signaled.
2063    pub fn new_set() -> Self {
2064        let s = Self::new();
2065        s.set();
2066        s
2067    }
2068
2069    /// If the signal was set.
2070    pub fn is_set(&self) -> bool {
2071        self.0.signaled.load(Ordering::Relaxed)
2072    }
2073
2074    /// Sets the signal and awakes listeners.
2075    pub fn set(&self) {
2076        if !self.0.signaled.swap(true, Ordering::Relaxed) {
2077            let listeners = mem::take(&mut *self.0.listeners.lock());
2078            for listener in listeners {
2079                listener.wake();
2080            }
2081        }
2082    }
2083}
2084impl Future for SignalOnce {
2085    type Output = ();
2086
2087    fn poll(self: Pin<&mut Self>, cx: &mut std::task::Context<'_>) -> Poll<()> {
2088        if self.0.signaled.load(Ordering::Relaxed) {
2089            return Poll::Ready(());
2090        }
2091
2092        let mut listeners = self.0.listeners.lock();
2093        if self.0.signaled.load(Ordering::Relaxed) {
2094            return Poll::Ready(());
2095        }
2096
2097        let waker = cx.waker();
2098        if !listeners.iter().any(|w| w.will_wake(waker)) {
2099            listeners.push(waker.clone());
2100        }
2101
2102        Poll::Pending
2103    }
2104}
2105
2106#[derive(Default)]
2107struct SignalInner {
2108    signaled: AtomicBool,
2109    listeners: Mutex<Vec<std::task::Waker>>,
2110}
2111
2112/// A [`Waker`] that dispatches a wake call to multiple other wakers.
2113///
2114/// This is useful for sharing one wake source with multiple [`Waker`] clients that may not be all
2115/// known at the moment the first request is made.
2116///  
2117/// [`Waker`]: std::task::Waker
2118#[derive(Clone)]
2119pub struct McWaker(Arc<WakeVec>);
2120
2121#[derive(Default)]
2122struct WakeVec(Mutex<Vec<std::task::Waker>>);
2123impl WakeVec {
2124    fn push(&self, waker: std::task::Waker) -> bool {
2125        let mut v = self.0.lock();
2126
2127        let return_waker = v.is_empty();
2128
2129        v.push(waker);
2130
2131        return_waker
2132    }
2133
2134    fn cancel(&self) {
2135        let mut v = self.0.lock();
2136
2137        debug_assert!(!v.is_empty(), "called cancel on an empty McWaker");
2138
2139        v.clear();
2140    }
2141}
2142impl std::task::Wake for WakeVec {
2143    fn wake(self: Arc<Self>) {
2144        for w in mem::take(&mut *self.0.lock()) {
2145            w.wake();
2146        }
2147    }
2148}
2149impl McWaker {
2150    /// New empty waker.
2151    pub fn empty() -> Self {
2152        Self(Arc::new(WakeVec::default()))
2153    }
2154
2155    /// Register a `waker` to wake once when `self` awakes.
2156    ///
2157    /// Returns `Some(self as waker)` if `self` was previously empty, if `None` is returned [`Poll::Pending`] must
2158    /// be returned, if a waker is returned the shared resource must be polled using the waker, if the shared resource
2159    /// is ready [`cancel`] must be called.
2160    ///
2161    /// [`cancel`]: Self::cancel
2162    pub fn push(&self, waker: std::task::Waker) -> Option<std::task::Waker> {
2163        if self.0.push(waker) { Some(self.0.clone().into()) } else { None }
2164    }
2165
2166    /// Clear current registered wakers.
2167    pub fn cancel(&self) {
2168        self.0.cancel()
2169    }
2170}