zerocopy/pointer/
ptr.rs

1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{
10    fmt::{Debug, Formatter},
11    marker::PhantomData,
12};
13
14use crate::{
15    pointer::{
16        inner::PtrInner,
17        invariant::*,
18        transmute::{MutationCompatible, SizeEq, TransmuteFromPtr},
19    },
20    AlignmentError, CastError, CastType, KnownLayout, SizeError, TryFromBytes, ValidityError,
21};
22
23/// Module used to gate access to [`Ptr`]'s fields.
24mod def {
25    #[cfg(doc)]
26    use super::super::invariant;
27    use super::*;
28
29    /// A raw pointer with more restrictions.
30    ///
31    /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
32    /// following ways (note that these requirements only hold of non-zero-sized
33    /// referents):
34    /// - It must derive from a valid allocation.
35    /// - It must reference a byte range which is contained inside the
36    ///   allocation from which it derives.
37    ///   - As a consequence, the byte range it references must have a size
38    ///     which does not overflow `isize`.
39    ///
40    /// Depending on how `Ptr` is parameterized, it may have additional
41    /// invariants:
42    /// - `ptr` conforms to the aliasing invariant of
43    ///   [`I::Aliasing`](invariant::Aliasing).
44    /// - `ptr` conforms to the alignment invariant of
45    ///   [`I::Alignment`](invariant::Alignment).
46    /// - `ptr` conforms to the validity invariant of
47    ///   [`I::Validity`](invariant::Validity).
48    ///
49    /// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`.
50    ///
51    /// [`NonNull<T>`]: core::ptr::NonNull
52    /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
53    pub struct Ptr<'a, T, I>
54    where
55        T: ?Sized,
56        I: Invariants,
57    {
58        /// # Invariants
59        ///
60        /// 0. `ptr` conforms to the aliasing invariant of
61        ///    [`I::Aliasing`](invariant::Aliasing).
62        /// 1. `ptr` conforms to the alignment invariant of
63        ///    [`I::Alignment`](invariant::Alignment).
64        /// 2. `ptr` conforms to the validity invariant of
65        ///    [`I::Validity`](invariant::Validity).
66        // SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`.
67        ptr: PtrInner<'a, T>,
68        _invariants: PhantomData<I>,
69    }
70
71    impl<'a, T, I> Ptr<'a, T, I>
72    where
73        T: 'a + ?Sized,
74        I: Invariants,
75    {
76        /// Constructs a new `Ptr` from a [`PtrInner`].
77        ///
78        /// # Safety
79        ///
80        /// The caller promises that:
81        ///
82        /// 0. `ptr` conforms to the aliasing invariant of
83        ///    [`I::Aliasing`](invariant::Aliasing).
84        /// 1. `ptr` conforms to the alignment invariant of
85        ///    [`I::Alignment`](invariant::Alignment).
86        /// 2. `ptr` conforms to the validity invariant of
87        ///    [`I::Validity`](invariant::Validity).
88        pub(crate) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> {
89            // SAFETY: The caller has promised to satisfy all safety invariants
90            // of `Ptr`.
91            Self { ptr, _invariants: PhantomData }
92        }
93
94        /// Converts this `Ptr<T>` to a [`PtrInner<T>`].
95        ///
96        /// Note that this method does not consume `self`. The caller should
97        /// watch out for `unsafe` code which uses the returned value in a way
98        /// that violates the safety invariants of `self`.
99        pub(crate) fn as_inner(&self) -> PtrInner<'a, T> {
100            self.ptr
101        }
102    }
103}
104
105#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
106pub use def::Ptr;
107
108/// External trait implementations on [`Ptr`].
109mod _external {
110    use super::*;
111
112    /// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants
113    /// (besides aliasing) are unaffected by the number of references that exist
114    /// to `Ptr`'s referent. The notable cases are:
115    /// - Alignment is a property of the referent type (`T`) and the address,
116    ///   both of which are unchanged
117    /// - Let `S(T, V)` be the set of bit values permitted to appear in the
118    ///   referent of a `Ptr<T, I: Invariants<Validity = V>>`. Since this copy
119    ///   does not change `I::Validity` or `T`, `S(T, I::Validity)` is also
120    ///   unchanged.
121    ///
122    ///   We are required to guarantee that the referents of the original `Ptr`
123    ///   and of the copy (which, of course, are actually the same since they
124    ///   live in the same byte address range) both remain in the set `S(T,
125    ///   I::Validity)`. Since this invariant holds on the original `Ptr`, it
126    ///   cannot be violated by the original `Ptr`, and thus the original `Ptr`
127    ///   cannot be used to violate this invariant on the copy. The inverse
128    ///   holds as well.
129    impl<'a, T, I> Copy for Ptr<'a, T, I>
130    where
131        T: 'a + ?Sized,
132        I: Invariants<Aliasing = Shared>,
133    {
134    }
135
136    /// SAFETY: See the safety comment on `Copy`.
137    impl<'a, T, I> Clone for Ptr<'a, T, I>
138    where
139        T: 'a + ?Sized,
140        I: Invariants<Aliasing = Shared>,
141    {
142        #[inline]
143        fn clone(&self) -> Self {
144            *self
145        }
146    }
147
148    impl<'a, T, I> Debug for Ptr<'a, T, I>
149    where
150        T: 'a + ?Sized,
151        I: Invariants,
152    {
153        #[inline]
154        fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
155            self.as_inner().as_non_null().fmt(f)
156        }
157    }
158}
159
160/// Methods for converting to and from `Ptr` and Rust's safe reference types.
161mod _conversions {
162    use super::*;
163    use crate::pointer::cast::CastSized;
164
165    /// `&'a T` → `Ptr<'a, T>`
166    impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
167    where
168        T: 'a + ?Sized,
169    {
170        /// Constructs a `Ptr` from a shared reference.
171        #[doc(hidden)]
172        #[inline(always)]
173        pub fn from_ref(ptr: &'a T) -> Self {
174            let inner = PtrInner::from_ref(ptr);
175            // SAFETY:
176            // 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing
177            //    invariant of `Shared`.
178            // 1. `ptr`, by invariant on `&'a T`, conforms to the alignment
179            //    invariant of `Aligned`.
180            // 2. `ptr`'s referent, by invariant on `&'a T`, is a bit-valid `T`.
181            //    This satisfies the requirement that a `Ptr<T, (_, _, Valid)>`
182            //    point to a bit-valid `T`. Even if `T` permits interior
183            //    mutation, this invariant guarantees that the returned `Ptr`
184            //    can only ever be used to modify the referent to store
185            //    bit-valid `T`s, which ensures that the returned `Ptr` cannot
186            //    be used to violate the soundness of the original `ptr: &'a T`
187            //    or of any other references that may exist to the same
188            //    referent.
189            unsafe { Self::from_inner(inner) }
190        }
191    }
192
193    /// `&'a mut T` → `Ptr<'a, T>`
194    impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
195    where
196        T: 'a + ?Sized,
197    {
198        /// Constructs a `Ptr` from an exclusive reference.
199        #[doc(hidden)]
200        #[inline(always)]
201        pub fn from_mut(ptr: &'a mut T) -> Self {
202            let inner = PtrInner::from_mut(ptr);
203            // SAFETY:
204            // 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
205            //    invariant of `Exclusive`.
206            // 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
207            //    invariant of `Aligned`.
208            // 2. `ptr`'s referent, by invariant on `&'a mut T`, is a bit-valid
209            //    `T`. This satisfies the requirement that a `Ptr<T, (_, _,
210            //    Valid)>` point to a bit-valid `T`. This invariant guarantees
211            //    that the returned `Ptr` can only ever be used to modify the
212            //    referent to store bit-valid `T`s, which ensures that the
213            //    returned `Ptr` cannot be used to violate the soundness of the
214            //    original `ptr: &'a mut T`.
215            unsafe { Self::from_inner(inner) }
216        }
217    }
218
219    /// `Ptr<'a, T>` → `&'a T`
220    impl<'a, T, I> Ptr<'a, T, I>
221    where
222        T: 'a + ?Sized,
223        I: Invariants<Alignment = Aligned, Validity = Valid>,
224        I::Aliasing: Reference,
225    {
226        /// Converts `self` to a shared reference.
227        // This consumes `self`, not `&self`, because `self` is, logically, a
228        // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
229        // this doesn't prevent the caller from still using the pointer after
230        // calling `as_ref`.
231        #[allow(clippy::wrong_self_convention)]
232        pub(crate) fn as_ref(self) -> &'a T {
233            let raw = self.as_inner().as_non_null();
234            // SAFETY: `self` satisfies the `Aligned` invariant, so we know that
235            // `raw` is validly-aligned for `T`.
236            #[cfg(miri)]
237            unsafe {
238                crate::util::miri_promise_symbolic_alignment(
239                    raw.as_ptr().cast(),
240                    core::mem::align_of_val_raw(raw.as_ptr()),
241                );
242            }
243            // SAFETY: This invocation of `NonNull::as_ref` satisfies its
244            // documented safety preconditions:
245            //
246            // 1. The pointer is properly aligned. This is ensured by-contract
247            //    on `Ptr`, because the `I::Alignment` is `Aligned`.
248            //
249            // 2. If the pointer's referent is not zero-sized, then the pointer
250            //    must be “dereferenceable” in the sense defined in the module
251            //    documentation; i.e.:
252            //
253            //    > The memory range of the given size starting at the pointer
254            //    > must all be within the bounds of a single allocated object.
255            //    > [2]
256            //
257            //   This is ensured by contract on all `PtrInner`s.
258            //
259            // 3. The pointer must point to a validly-initialized instance of
260            //    `T`. This is ensured by-contract on `Ptr`, because the
261            //    `I::Validity` is `Valid`.
262            //
263            // 4. You must enforce Rust’s aliasing rules. This is ensured by
264            //    contract on `Ptr`, because `I::Aliasing: Reference`. Either it
265            //    is `Shared` or `Exclusive`. If it is `Shared`, other
266            //    references may not mutate the referent outside of
267            //    `UnsafeCell`s.
268            //
269            // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
270            // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
271            unsafe { raw.as_ref() }
272        }
273    }
274
275    impl<'a, T, I> Ptr<'a, T, I>
276    where
277        T: 'a + ?Sized,
278        I: Invariants,
279        I::Aliasing: Reference,
280    {
281        /// Reborrows `self`, producing another `Ptr`.
282        ///
283        /// Since `self` is borrowed immutably, this prevents any mutable
284        /// methods from being called on `self` as long as the returned `Ptr`
285        /// exists.
286        #[doc(hidden)]
287        #[inline]
288        #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
289        pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
290        where
291            'a: 'b,
292        {
293            // SAFETY: The following all hold by invariant on `self`, and thus
294            // hold of `ptr = self.as_inner()`:
295            // 0. SEE BELOW.
296            // 1. `ptr` conforms to the alignment invariant of
297            //    [`I::Alignment`](invariant::Alignment).
298            // 2. `ptr` conforms to the validity invariant of
299            //    [`I::Validity`](invariant::Validity). `self` and the returned
300            //    `Ptr` permit the same bit values in their referents since they
301            //    have the same referent type (`T`) and the same validity
302            //    (`I::Validity`). Thus, regardless of what mutation is
303            //    permitted (`Exclusive` aliasing or `Shared`-aliased interior
304            //    mutation), neither can be used to write a value to the
305            //    referent which violates the other's validity invariant.
306            //
307            // For aliasing (0 above), since `I::Aliasing: Reference`,
308            // there are two cases for `I::Aliasing`:
309            // - For `invariant::Shared`: `'a` outlives `'b`, and so the
310            //   returned `Ptr` does not permit accessing the referent any
311            //   longer than is possible via `self`. For shared aliasing, it is
312            //   sound for multiple `Ptr`s to exist simultaneously which
313            //   reference the same memory, so creating a new one is not
314            //   problematic.
315            // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
316            //   return a `Ptr` with lifetime `'b`, `self` is inaccessible to
317            //   the caller for the lifetime `'b` - in other words, `self` is
318            //   inaccessible to the caller as long as the returned `Ptr`
319            //   exists. Since `self` is an exclusive `Ptr`, no other live
320            //   references or `Ptr`s may exist which refer to the same memory
321            //   while `self` is live. Thus, as long as the returned `Ptr`
322            //   exists, no other references or `Ptr`s which refer to the same
323            //   memory may be live.
324            unsafe { Ptr::from_inner(self.as_inner()) }
325        }
326    }
327
328    /// `Ptr<'a, T>` → `&'a mut T`
329    impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
330    where
331        T: 'a + ?Sized,
332    {
333        /// Converts `self` to a mutable reference.
334        #[allow(clippy::wrong_self_convention)]
335        pub(crate) fn as_mut(self) -> &'a mut T {
336            let mut raw = self.as_inner().as_non_null();
337            // SAFETY: `self` satisfies the `Aligned` invariant, so we know that
338            // `raw` is validly-aligned for `T`.
339            #[cfg(miri)]
340            unsafe {
341                crate::util::miri_promise_symbolic_alignment(
342                    raw.as_ptr().cast(),
343                    core::mem::align_of_val_raw(raw.as_ptr()),
344                );
345            }
346            // SAFETY: This invocation of `NonNull::as_mut` satisfies its
347            // documented safety preconditions:
348            //
349            // 1. The pointer is properly aligned. This is ensured by-contract
350            //    on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
351            //
352            // 2. If the pointer's referent is not zero-sized, then the pointer
353            //    must be “dereferenceable” in the sense defined in the module
354            //    documentation; i.e.:
355            //
356            //    > The memory range of the given size starting at the pointer
357            //    > must all be within the bounds of a single allocated object.
358            //    > [2]
359            //
360            //   This is ensured by contract on all `PtrInner`s.
361            //
362            // 3. The pointer must point to a validly-initialized instance of
363            //    `T`. This is ensured by-contract on `Ptr`, because the
364            //    validity invariant is `Valid`.
365            //
366            // 4. You must enforce Rust’s aliasing rules. This is ensured by
367            //    contract on `Ptr`, because the `ALIASING_INVARIANT` is
368            //    `Exclusive`.
369            //
370            // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
371            // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
372            unsafe { raw.as_mut() }
373        }
374    }
375
376    /// `Ptr<'a, T>` → `Ptr<'a, U>`
377    impl<'a, T: ?Sized, I> Ptr<'a, T, I>
378    where
379        I: Invariants,
380    {
381        pub(crate) fn transmute<U, V, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
382        where
383            V: Validity,
384            U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, R> + SizeEq<T> + ?Sized,
385        {
386            // SAFETY:
387            // - By `SizeEq::CastFrom: Cast`, `SizeEq::CastFrom` preserves
388            //   referent address, and so we don't need to consider projections
389            //   in the following safety arguments.
390            // - If aliasing is `Shared`, then by `U: TransmuteFromPtr<T>`, at
391            //   least one of the following holds:
392            //   - `T: Immutable` and `U: Immutable`, in which case it is
393            //     trivially sound for shared code to operate on a `&T` and `&U`
394            //     at the same time, as neither can perform interior mutation
395            //   - It is directly guaranteed that it is sound for shared code to
396            //     operate on these references simultaneously
397            // - By `U: TransmuteFromPtr<T, I::Aliasing, I::Validity, V>`, it is
398            //   sound to perform this transmute.
399            unsafe { self.project_transmute_unchecked::<_, _, <U as SizeEq<T>>::CastFrom>() }
400        }
401
402        #[doc(hidden)]
403        #[inline(always)]
404        #[must_use]
405        pub fn recall_validity<V, R>(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)>
406        where
407            V: Validity,
408            T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V, R>,
409        {
410            // SAFETY:
411            // - By `SizeEq::CastFrom: Cast`, `SizeEq::CastFrom` preserves
412            //   referent address, and so we don't need to consider projections
413            //   in the following safety arguments.
414            // - It is trivially sound to have multiple `&T` referencing the
415            //   same referent simultaneously
416            // - By `T: TransmuteFromPtr<T, I::Aliasing, I::Validity, V>`, it is
417            //   sound to perform this transmute.
418            let ptr =
419                unsafe { self.project_transmute_unchecked::<_, _, <T as SizeEq<T>>::CastFrom>() };
420            // SAFETY: `self` and `ptr` have the same address and referent type.
421            // Therefore, if `self` satisfies `I::Alignment`, then so does
422            // `ptr`.
423            unsafe { ptr.assume_alignment::<I::Alignment>() }
424        }
425
426        /// Projects and/or transmutes to a different (unsized) referent type
427        /// without checking interior mutability.
428        ///
429        /// Callers should prefer [`cast`] or [`project`] where possible.
430        ///
431        /// [`cast`]: Ptr::cast
432        /// [`project`]: Ptr::project
433        ///
434        /// # Safety
435        ///
436        /// The caller promises that:
437        /// - If `I::Aliasing` is [`Shared`], it must not be possible for safe
438        ///   code, operating on a `&T` and `&U`, with the referents of `self`
439        ///   and `self.project_transmute_unchecked()`, respectively, to cause
440        ///   undefined behavior.
441        /// - It is sound to project and/or transmute a pointer of type `T` with
442        ///   aliasing `I::Aliasing` and validity `I::Validity` to a pointer of
443        ///   type `U` with aliasing `I::Aliasing` and validity `V`. This is a
444        ///   subtle soundness requirement that is a function of `T`, `U`,
445        ///   `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the
446        ///   presence, absence, or specific location of `UnsafeCell`s in `T`
447        ///   and/or `U`. See [`Validity`] for more details.
448        #[doc(hidden)]
449        #[inline(always)]
450        #[must_use]
451        pub unsafe fn project_transmute_unchecked<U: ?Sized, V, P>(
452            self,
453        ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
454        where
455            V: Validity,
456            P: crate::pointer::cast::Project<T, U>,
457        {
458            let ptr = self.as_inner().project::<_, P>();
459
460            // SAFETY:
461            //
462            // The following safety arguments rely on the fact that `P: Project`
463            // guarantees that `P` is a referent-preserving or -shrinking
464            // projection. Thus, `ptr` addresses a subset of the bytes of
465            // `*self`, and so certain properties that hold of `*self` also hold
466            // of `*ptr`.
467            //
468            // 0. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
469            //    - `Exclusive`: `self` is the only `Ptr` or reference which is
470            //      permitted to read or modify the referent for the lifetime
471            //      `'a`. Since we consume `self` by value, the returned pointer
472            //      remains the only `Ptr` or reference which is permitted to
473            //      read or modify the referent for the lifetime `'a`.
474            //    - `Shared`: Since `self` has aliasing `Shared`, we know that
475            //      no other code may mutate the referent during the lifetime
476            //      `'a`, except via `UnsafeCell`s, and except as permitted by
477            //      `T`'s library safety invariants. The caller promises that
478            //      any safe operations which can be permitted on a `&T` and a
479            //      `&U` simultaneously must be sound. Thus, no operations on a
480            //      `&U` could violate `&T`'s library safety invariants, and
481            //      vice-versa. Since any mutation via shared references outside
482            //      of `UnsafeCell`s is unsound, this must be impossible using
483            //      `&T` and `&U`.
484            //    - `Inaccessible`: There are no restrictions we need to uphold.
485            // 1. `ptr` trivially satisfies the alignment invariant `Unaligned`.
486            // 2. The caller promises that the returned pointer satisfies the
487            //    validity invariant `V` with respect to its referent type, `U`.
488            unsafe { Ptr::from_inner(ptr) }
489        }
490    }
491
492    /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
493    impl<'a, T, I> Ptr<'a, T, I>
494    where
495        I: Invariants,
496    {
497        /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
498        /// `Unalign<T>`.
499        pub(crate) fn into_unalign(
500            self,
501        ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
502            // SAFETY:
503            // - By `CastSized: Cast`, `CastSized` preserves referent address,
504            //   and so we don't need to consider projections in the following
505            //   safety arguments.
506            // - Since `Unalign<T>` has the same layout as `T`, the returned
507            //   pointer refers to `UnsafeCell`s at the same locations as
508            //   `self`.
509            // - `Unalign<T>` promises to have the same bit validity as `T`. By
510            //   invariant on `Validity`, the set of bit patterns allowed in the
511            //   referent of a `Ptr<X, (_, _, V)>` is only a function of the
512            //   validity of `X` and of `V`. Thus, the set of bit patterns
513            //   allowed in the referent of a `Ptr<T, (_, _, I::Validity)>` is
514            //   the same as the set of bit patterns allowed in the referent of
515            //   a `Ptr<Unalign<T>, (_, _, I::Validity)>`. As a result, `self`
516            //   and the returned `Ptr` permit the same set of bit patterns in
517            //   their referents, and so neither can be used to violate the
518            //   validity of the other.
519            let ptr = unsafe { self.project_transmute_unchecked::<_, _, CastSized>() };
520            ptr.bikeshed_recall_aligned()
521        }
522    }
523
524    impl<'a, T, I> Ptr<'a, T, I>
525    where
526        T: ?Sized,
527        I: Invariants<Validity = Valid>,
528        I::Aliasing: Reference,
529    {
530        /// Reads the referent.
531        #[must_use]
532        #[inline]
533        pub fn read_unaligned<R>(self) -> T
534        where
535            T: Copy,
536            T: Read<I::Aliasing, R>,
537        {
538            (*self.into_unalign().as_ref()).into_inner()
539        }
540
541        /// Views the value as an aligned reference.
542        ///
543        /// This is only available if `T` is [`Unaligned`].
544        #[must_use]
545        #[inline]
546        pub fn unaligned_as_ref(self) -> &'a T
547        where
548            T: crate::Unaligned,
549        {
550            self.bikeshed_recall_aligned().as_ref()
551        }
552    }
553}
554
555/// State transitions between invariants.
556mod _transitions {
557    use super::*;
558    use crate::pointer::transmute::TryTransmuteFromPtr;
559
560    impl<'a, T, I> Ptr<'a, T, I>
561    where
562        T: 'a + ?Sized,
563        I: Invariants,
564    {
565        /// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has
566        /// `Exclusive` aliasing, or generates a compile-time assertion failure.
567        ///
568        /// This allows code which is generic over aliasing to down-cast to a
569        /// concrete aliasing.
570        ///
571        /// [`Exclusive`]: crate::pointer::invariant::Exclusive
572        #[inline]
573        pub(crate) fn into_exclusive_or_pme(
574            self,
575        ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
576            // NOTE(https://github.com/rust-lang/rust/issues/131625): We do this
577            // rather than just having `Aliasing::IS_EXCLUSIVE` have the panic
578            // behavior because doing it that way causes rustdoc to fail while
579            // attempting to document hidden items (since it evaluates the
580            // constant - and thus panics).
581            trait AliasingExt: Aliasing {
582                const IS_EXCL: bool;
583            }
584
585            impl<A: Aliasing> AliasingExt for A {
586                const IS_EXCL: bool = {
587                    const_assert!(Self::IS_EXCLUSIVE);
588                    true
589                };
590            }
591
592            assert!(I::Aliasing::IS_EXCL);
593
594            // SAFETY: We've confirmed that `self` already has the aliasing
595            // `Exclusive`. If it didn't, either the preceding assert would fail
596            // or evaluating `I::Aliasing::IS_EXCL` would fail. We're *pretty*
597            // sure that it's guaranteed to fail const eval, but the `assert!`
598            // provides a backstop in case that doesn't work.
599            unsafe { self.assume_exclusive() }
600        }
601
602        /// Assumes that `self` satisfies the invariants `H`.
603        ///
604        /// # Safety
605        ///
606        /// The caller promises that `self` satisfies the invariants `H`.
607        unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
608            // SAFETY: The caller has promised to satisfy all parameterized
609            // invariants of `Ptr`. `Ptr`'s other invariants are satisfied
610            // by-contract by the source `Ptr`.
611            unsafe { Ptr::from_inner(self.as_inner()) }
612        }
613
614        /// Helps the type system unify two distinct invariant types which are
615        /// actually the same.
616        pub(crate) fn unify_invariants<
617            H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
618        >(
619            self,
620        ) -> Ptr<'a, T, H> {
621            // SAFETY: The associated type bounds on `H` ensure that the
622            // invariants are unchanged.
623            unsafe { self.assume_invariants::<H>() }
624        }
625
626        /// Assumes that `self` satisfies the aliasing requirement of `A`.
627        ///
628        /// # Safety
629        ///
630        /// The caller promises that `self` satisfies the aliasing requirement
631        /// of `A`.
632        #[inline]
633        pub(crate) unsafe fn assume_aliasing<A: Aliasing>(
634            self,
635        ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> {
636            // SAFETY: The caller promises that `self` satisfies the aliasing
637            // requirements of `A`.
638            unsafe { self.assume_invariants() }
639        }
640
641        /// Assumes `self` satisfies the aliasing requirement of [`Exclusive`].
642        ///
643        /// # Safety
644        ///
645        /// The caller promises that `self` satisfies the aliasing requirement
646        /// of `Exclusive`.
647        ///
648        /// [`Exclusive`]: crate::pointer::invariant::Exclusive
649        #[inline]
650        pub(crate) unsafe fn assume_exclusive(
651            self,
652        ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
653            // SAFETY: The caller promises that `self` satisfies the aliasing
654            // requirements of `Exclusive`.
655            unsafe { self.assume_aliasing::<Exclusive>() }
656        }
657
658        /// Assumes that `self`'s referent is validly-aligned for `T` if
659        /// required by `A`.
660        ///
661        /// # Safety
662        ///
663        /// The caller promises that `self`'s referent conforms to the alignment
664        /// invariant of `T` if required by `A`.
665        #[inline]
666        pub(crate) unsafe fn assume_alignment<A: Alignment>(
667            self,
668        ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
669            // SAFETY: The caller promises that `self`'s referent is
670            // well-aligned for `T` if required by `A` .
671            unsafe { self.assume_invariants() }
672        }
673
674        /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
675        /// on success.
676        pub(crate) fn try_into_aligned(
677            self,
678        ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
679        where
680            T: Sized,
681        {
682            if let Err(err) =
683                crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null())
684            {
685                return Err(err.with_src(self));
686            }
687
688            // SAFETY: We just checked the alignment.
689            Ok(unsafe { self.assume_alignment::<Aligned>() })
690        }
691
692        /// Recalls that `self`'s referent is validly-aligned for `T`.
693        #[inline]
694        // FIXME(#859): Reconsider the name of this method before making it
695        // public.
696        pub(crate) fn bikeshed_recall_aligned(
697            self,
698        ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
699        where
700            T: crate::Unaligned,
701        {
702            // SAFETY: The bound `T: Unaligned` ensures that `T` has no
703            // non-trivial alignment requirement.
704            unsafe { self.assume_alignment::<Aligned>() }
705        }
706
707        /// Assumes that `self`'s referent conforms to the validity requirement
708        /// of `V`.
709        ///
710        /// # Safety
711        ///
712        /// The caller promises that `self`'s referent conforms to the validity
713        /// requirement of `V`.
714        #[doc(hidden)]
715        #[must_use]
716        #[inline]
717        pub unsafe fn assume_validity<V: Validity>(
718            self,
719        ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
720            // SAFETY: The caller promises that `self`'s referent conforms to
721            // the validity requirement of `V`.
722            unsafe { self.assume_invariants() }
723        }
724
725        /// A shorthand for `self.assume_validity<invariant::Initialized>()`.
726        ///
727        /// # Safety
728        ///
729        /// The caller promises to uphold the safety preconditions of
730        /// `self.assume_validity<invariant::Initialized>()`.
731        #[doc(hidden)]
732        #[must_use]
733        #[inline]
734        pub unsafe fn assume_initialized(
735            self,
736        ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
737            // SAFETY: The caller has promised to uphold the safety
738            // preconditions.
739            unsafe { self.assume_validity::<Initialized>() }
740        }
741
742        /// A shorthand for `self.assume_validity<Valid>()`.
743        ///
744        /// # Safety
745        ///
746        /// The caller promises to uphold the safety preconditions of
747        /// `self.assume_validity<Valid>()`.
748        #[doc(hidden)]
749        #[must_use]
750        #[inline]
751        pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
752            // SAFETY: The caller has promised to uphold the safety
753            // preconditions.
754            unsafe { self.assume_validity::<Valid>() }
755        }
756
757        /// Recalls that `self`'s referent is initialized.
758        #[doc(hidden)]
759        #[must_use]
760        #[inline]
761        // FIXME(#859): Reconsider the name of this method before making it
762        // public.
763        pub fn bikeshed_recall_initialized_from_bytes(
764            self,
765        ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)>
766        where
767            T: crate::IntoBytes + crate::FromBytes,
768            I: Invariants<Validity = Valid>,
769        {
770            // SAFETY: The `T: IntoBytes + FromBytes` bound ensures that `T`'s
771            // bit validity is equivalent to `[u8]`. In other words, the set of
772            // allowed referents for a `Ptr<T, (_, _, Valid)>` is the set of
773            // initialized bit patterns. The same is true of the set of allowed
774            // referents for any `Ptr<_, (_, _, Initialized)>`. Thus, this call
775            // does not change the set of allowed values in the referent.
776            unsafe { self.assume_initialized() }
777        }
778
779        /// Recalls that `self`'s referent is initialized.
780        #[doc(hidden)]
781        #[must_use]
782        #[inline]
783        // FIXME(#859): Reconsider the name of this method before making it
784        // public.
785        pub fn bikeshed_recall_initialized_immutable(
786            self,
787        ) -> Ptr<'a, T, (Shared, I::Alignment, Initialized)>
788        where
789            T: crate::IntoBytes + crate::Immutable,
790            I: Invariants<Aliasing = Shared, Validity = Valid>,
791        {
792            // SAFETY: Let `O` (for "old") be the set of allowed bit patterns in
793            // `self`'s referent, and let `N` (for "new") be the set of allowed
794            // bit patterns in the referent of the returned `Ptr`. `T:
795            // IntoBytes` and `I: Invariants<Validity = Valid>` ensures that `O`
796            // cannot contain any uninitialized bit patterns. Since the returned
797            // `Ptr` has validity `Initialized`, `N` is equal to the set of all
798            // initialized bit patterns. Thus, `O` is a subset of `N`, and so
799            // the returned `Ptr`'s validity invariant is upheld.
800            //
801            // Since `T: Immutable` and aliasing is `Shared`, the returned `Ptr`
802            // cannot be used to modify the referent. Before this call, `self`'s
803            // referent is guaranteed by invariant on `Ptr` to satisfy `self`'s
804            // validity invariant. Since the returned `Ptr` cannot be used to
805            // modify the referent, this guarantee cannot be violated by the
806            // returned `Ptr` (even if `O` is a strict subset of `N`).
807            unsafe { self.assume_initialized() }
808        }
809
810        /// Checks that `self`'s referent is validly initialized for `T`,
811        /// returning a `Ptr` with `Valid` on success.
812        ///
813        /// # Panics
814        ///
815        /// This method will panic if
816        /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
817        ///
818        /// # Safety
819        ///
820        /// On error, unsafe code may rely on this method's returned
821        /// `ValidityError` containing `self`.
822        #[inline]
823        pub(crate) fn try_into_valid<R, S>(
824            mut self,
825        ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
826        where
827            T: TryFromBytes
828                + Read<I::Aliasing, R>
829                + TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid, S>,
830            I::Aliasing: Reference,
831            I: Invariants<Validity = Initialized>,
832        {
833            // This call may panic. If that happens, it doesn't cause any
834            // soundness issues, as we have not generated any invalid state
835            // which we need to fix before returning.
836            if T::is_bit_valid(self.reborrow().forget_aligned()) {
837                // SAFETY: If `T::is_bit_valid`, code may assume that `self`
838                // contains a bit-valid instance of `T`. By `T:
839                // TryTransmuteFromPtr<T, I::Aliasing, I::Validity, Valid>`, so
840                // long as `self`'s referent conforms to the `Valid` validity
841                // for `T` (which we just confirmed), then this transmute is
842                // sound.
843                Ok(unsafe { self.assume_valid() })
844            } else {
845                Err(ValidityError::new(self))
846            }
847        }
848
849        /// Forgets that `self`'s referent is validly-aligned for `T`.
850        #[doc(hidden)]
851        #[must_use]
852        #[inline]
853        pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> {
854            // SAFETY: `Unaligned` is less restrictive than `Aligned`.
855            unsafe { self.assume_invariants() }
856        }
857    }
858}
859
860/// Casts of the referent type.
861mod _casts {
862    use core::cell::UnsafeCell;
863
864    use super::*;
865    use crate::{
866        pointer::cast::{AsBytesCast, Cast},
867        HasField,
868    };
869
870    impl<'a, T, I> Ptr<'a, T, I>
871    where
872        T: 'a + ?Sized,
873        I: Invariants,
874    {
875        /// Casts to a different referent type without checking interior
876        /// mutability.
877        ///
878        /// Callers should prefer [`cast`][Ptr::cast] where possible.
879        ///
880        /// # Safety
881        ///
882        /// If `I::Aliasing` is [`Shared`], it must not be possible for safe
883        /// code, operating on a `&T` and `&U` with the same referent
884        /// simultaneously, to cause undefined behavior.
885        #[doc(hidden)]
886        #[inline(always)]
887        #[must_use]
888        pub unsafe fn cast_unchecked<U, C: Cast<T, U>>(
889            self,
890        ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
891        where
892            U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,
893        {
894            // SAFETY:
895            // - By `C: Cast`, `C` preserves the address of the referent.
896            // - If `I::Aliasing` is [`Shared`], the caller promises that it
897            //   is not possible for safe code, operating on a `&T` and `&U`
898            //   with the same referent simultaneously, to cause undefined
899            //   behavior.
900            // - By `U: CastableFrom<T, I::Validity, I::Validity>`,
901            //   `I::Validity` is either `Uninit` or `Initialized`. In both
902            //   cases, the bit validity `I::Validity` has the same semantics
903            //   regardless of referent type. In other words, the set of allowed
904            //   referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U,
905            //   (_, _, I::Validity)>` are identical. As a consequence, neither
906            //   `self` nor the returned `Ptr` can be used to write values which
907            //   are invalid for the other.
908            unsafe { self.project_transmute_unchecked::<_, _, C>() }
909        }
910
911        /// Casts to a different referent type.
912        #[doc(hidden)]
913        #[inline(always)]
914        #[must_use]
915        pub fn cast<U, C, R>(self) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
916        where
917            T: MutationCompatible<U, I::Aliasing, I::Validity, I::Validity, R>,
918            U: 'a + ?Sized + CastableFrom<T, I::Validity, I::Validity>,
919            C: Cast<T, U>,
920        {
921            // SAFETY: Because `T: MutationCompatible<U, I::Aliasing, R>`, one
922            // of the following holds:
923            // - `T: Read<I::Aliasing>` and `U: Read<I::Aliasing>`, in which
924            //   case one of the following holds:
925            //   - `I::Aliasing` is `Exclusive`
926            //   - `T` and `U` are both `Immutable`
927            // - It is sound for safe code to operate on `&T` and `&U` with the
928            //   same referent simultaneously.
929            unsafe { self.cast_unchecked::<_, C>() }
930        }
931
932        // FIXME(#196): Support all validity invariants (not just those that are
933        // `CastableFrom`).
934        #[must_use]
935        #[inline(always)]
936        pub fn project<F, const FIELD_ID: i128>(
937            self,
938        ) -> Ptr<'a, T::Type, (I::Aliasing, Unaligned, I::Validity)>
939        where
940            T: HasField<F, { crate::STRUCT_VARIANT_ID }, FIELD_ID>,
941            T::Type: 'a + CastableFrom<T, I::Validity, I::Validity>,
942        {
943            let ptr = self.as_inner().project::<_, crate::pointer::cast::Projection<
944                F,
945                { crate::STRUCT_VARIANT_ID },
946                FIELD_ID,
947            >>();
948
949            // SAFETY:
950            // 0. `PtrInner::project` promises that it produces a pointer which
951            //    references a subset of its argument's referent. Since, by
952            //    invariant on `Ptr`, its argument (`self.as_inner()`) satisfies
953            //    the aliasing invariant `I::Aliasing`, so does `ptr`.
954            // 1. The `Ptr` has alignment `Unaligned`, which is trivially
955            //    satisfied.
956            // 2. By `CastableFrom<T, I::Validity, I::Validity>`, `I::Validity`
957            //    is `Uninit` or `Initialized`. In either case, if `I::Validity`
958            //    holds of `self`'s referent, then it holds any subset of its
959            //    referent.
960            unsafe { Ptr::from_inner(ptr) }
961        }
962    }
963
964    impl<'a, T, I> Ptr<'a, T, I>
965    where
966        T: 'a + KnownLayout + ?Sized,
967        I: Invariants<Validity = Initialized>,
968    {
969        /// Casts this pointer-to-initialized into a pointer-to-bytes.
970        #[allow(clippy::wrong_self_convention)]
971        #[must_use]
972        #[inline]
973        pub fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
974        where
975            T: Read<I::Aliasing, R>,
976            I::Aliasing: Reference,
977        {
978            let ptr = self.cast::<_, AsBytesCast, _>();
979            ptr.bikeshed_recall_aligned().recall_validity::<Valid, (_, (_, _))>()
980        }
981    }
982
983    impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
984    where
985        T: 'a,
986        I: Invariants,
987    {
988        /// Casts this pointer-to-array into a slice.
989        #[allow(clippy::wrong_self_convention)]
990        pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
991            let slice = self.as_inner().as_slice();
992            // SAFETY: Note that, by post-condition on `PtrInner::as_slice`,
993            // `slice` refers to the same byte range as `self.as_inner()`.
994            //
995            // 0. Thus, `slice` conforms to the aliasing invariant of
996            //    `I::Aliasing` because `self` does.
997            // 1. By the above lemma, `slice` conforms to the alignment
998            //    invariant of `I::Alignment` because `self` does.
999            // 2. Since `[T; N]` and `[T]` have the same bit validity [1][2],
1000            //    and since `self` and the returned `Ptr` have the same validity
1001            //    invariant, neither `self` nor the returned `Ptr` can be used
1002            //    to write a value to the referent which violates the other's
1003            //    validity invariant.
1004            //
1005            // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout:
1006            //
1007            //   An array of `[T; N]` has a size of `size_of::<T>() * N` and the
1008            //   same alignment of `T`. Arrays are laid out so that the
1009            //   zero-based `nth` element of the array is offset from the start
1010            //   of the array by `n * size_of::<T>()` bytes.
1011            //
1012            //   ...
1013            //
1014            //   Slices have the same layout as the section of the array they
1015            //   slice.
1016            //
1017            // [2] Per https://doc.rust-lang.org/1.81.0/reference/types/array.html#array-types:
1018            //
1019            //   All elements of arrays are always initialized
1020            unsafe { Ptr::from_inner(slice) }
1021        }
1022    }
1023
1024    /// For caller convenience, these methods are generic over alignment
1025    /// invariant. In practice, the referent is always well-aligned, because the
1026    /// alignment of `[u8]` is 1.
1027    impl<'a, I> Ptr<'a, [u8], I>
1028    where
1029        I: Invariants<Validity = Valid>,
1030    {
1031        /// Attempts to cast `self` to a `U` using the given cast type.
1032        ///
1033        /// If `U` is a slice DST and pointer metadata (`meta`) is provided,
1034        /// then the cast will only succeed if it would produce an object with
1035        /// the given metadata.
1036        ///
1037        /// Returns `None` if the resulting `U` would be invalidly-aligned, if
1038        /// no `U` can fit in `self`, or if the provided pointer metadata
1039        /// describes an invalid instance of `U`. On success, returns a pointer
1040        /// to the largest-possible `U` which fits in `self`.
1041        ///
1042        /// # Safety
1043        ///
1044        /// The caller may assume that this implementation is correct, and may
1045        /// rely on that assumption for the soundness of their code. In
1046        /// particular, the caller may assume that, if `try_cast_into` returns
1047        /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
1048        /// non-overlapping byte ranges within `self`, and that `ptr` and
1049        /// `remainder` entirely cover `self`. Finally:
1050        /// - If this is a prefix cast, `ptr` has the same address as `self`.
1051        /// - If this is a suffix cast, `remainder` has the same address as
1052        ///   `self`.
1053        #[inline(always)]
1054        pub(crate) fn try_cast_into<U, R>(
1055            self,
1056            cast_type: CastType,
1057            meta: Option<U::PointerMetadata>,
1058        ) -> Result<
1059            (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
1060            CastError<Self, U>,
1061        >
1062        where
1063            I::Aliasing: Reference,
1064            U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1065        {
1066            let (inner, remainder) =
1067                self.as_inner().try_cast_into(cast_type, meta).map_err(|err| {
1068                    err.map_src(|inner|
1069                    // SAFETY: `PtrInner::try_cast_into` promises to return its
1070                    // original argument on error, which was originally produced
1071                    // by `self.as_inner()`, which is guaranteed to satisfy
1072                    // `Ptr`'s invariants.
1073                    unsafe { Ptr::from_inner(inner) })
1074                })?;
1075
1076            // SAFETY:
1077            // 0. Since `U: Read<I::Aliasing, _>`, either:
1078            //    - `I::Aliasing` is `Exclusive`, in which case both `src` and
1079            //      `ptr` conform to `Exclusive`
1080            //    - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already
1081            //      know that `[u8]: Immutable`). In this case, neither `U` nor
1082            //      `[u8]` permit mutation, and so `Shared` aliasing is
1083            //      satisfied.
1084            // 1. `ptr` conforms to the alignment invariant of `Aligned` because
1085            //    it is derived from `try_cast_into`, which promises that the
1086            //    object described by `target` is validly aligned for `U`.
1087            // 2. By trait bound, `self` - and thus `target` - is a bit-valid
1088            //    `[u8]`. `Ptr<[u8], (_, _, Valid)>` and `Ptr<_, (_, _,
1089            //    Initialized)>` have the same bit validity, and so neither
1090            //    `self` nor `res` can be used to write a value to the referent
1091            //    which violates the other's validity invariant.
1092            let res = unsafe { Ptr::from_inner(inner) };
1093
1094            // SAFETY:
1095            // 0. `self` and `remainder` both have the type `[u8]`. Thus, they
1096            //    have `UnsafeCell`s at the same locations. Type casting does
1097            //    not affect aliasing.
1098            // 1. `[u8]` has no alignment requirement.
1099            // 2. `self` has validity `Valid` and has type `[u8]`. Since
1100            //    `remainder` references a subset of `self`'s referent, it is
1101            //    also a bit-valid `[u8]`. Thus, neither `self` nor `remainder`
1102            //    can be used to write a value to the referent which violates
1103            //    the other's validity invariant.
1104            let remainder = unsafe { Ptr::from_inner(remainder) };
1105
1106            Ok((res, remainder))
1107        }
1108
1109        /// Attempts to cast `self` into a `U`, failing if all of the bytes of
1110        /// `self` cannot be treated as a `U`.
1111        ///
1112        /// In particular, this method fails if `self` is not validly-aligned
1113        /// for `U` or if `self`'s size is not a valid size for `U`.
1114        ///
1115        /// # Safety
1116        ///
1117        /// On success, the caller may assume that the returned pointer
1118        /// references the same byte range as `self`.
1119        #[allow(unused)]
1120        #[inline(always)]
1121        pub(crate) fn try_cast_into_no_leftover<U, R>(
1122            self,
1123            meta: Option<U::PointerMetadata>,
1124        ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
1125        where
1126            I::Aliasing: Reference,
1127            U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
1128        {
1129            // FIXME(#67): Remove this allow. See NonNulSlicelExt for more
1130            // details.
1131            #[allow(unstable_name_collisions)]
1132            match self.try_cast_into(CastType::Prefix, meta) {
1133                Ok((slf, remainder)) => {
1134                    if remainder.len() == 0 {
1135                        Ok(slf)
1136                    } else {
1137                        // Undo the cast so we can return the original bytes.
1138                        let slf = slf.as_bytes();
1139                        // Restore the initial alignment invariant of `self`.
1140                        //
1141                        // SAFETY: The referent type of `slf` is now equal to
1142                        // that of `self`, but the alignment invariants
1143                        // nominally differ. Since `slf` and `self` refer to the
1144                        // same memory and no actions have been taken that would
1145                        // violate the original invariants on `self`, it is
1146                        // sound to apply the alignment invariant of `self` onto
1147                        // `slf`.
1148                        let slf = unsafe { slf.assume_alignment::<I::Alignment>() };
1149                        let slf = slf.unify_invariants();
1150                        Err(CastError::Size(SizeError::<_, U>::new(slf)))
1151                    }
1152                }
1153                Err(err) => Err(err),
1154            }
1155        }
1156    }
1157
1158    impl<'a, T, I> Ptr<'a, UnsafeCell<T>, I>
1159    where
1160        T: 'a + ?Sized,
1161        I: Invariants<Aliasing = Exclusive>,
1162    {
1163        /// Converts this `Ptr` into a pointer to the underlying data.
1164        ///
1165        /// This call borrows the `UnsafeCell` mutably (at compile-time) which
1166        /// guarantees that we possess the only reference.
1167        ///
1168        /// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
1169        ///
1170        /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
1171        #[must_use]
1172        #[inline(always)]
1173        pub fn get_mut(self) -> Ptr<'a, T, I> {
1174            // SAFETY: As described below, `UnsafeCell<T>` has the same size
1175            // as `T: ?Sized` (same static size or same DST layout). Thus,
1176            // `*const UnsafeCell<T> as *const T` is a size-preserving cast.
1177            define_cast!(unsafe { Cast<T: ?Sized> = UnsafeCell<T> => T });
1178
1179            // SAFETY:
1180            // - Aliasing is `Exclusive`, and so we are not required to promise
1181            //   anything about the locations of `UnsafeCell`s.
1182            // - `UnsafeCell<T>` has the same bit validity as `T` [1].
1183            //   Technically the term "representation" doesn't guarantee this,
1184            //   but the subsequent sentence in the documentation makes it clear
1185            //   that this is the intention.
1186            //
1187            //   By invariant on `Validity`, since `T` and `UnsafeCell<T>` have
1188            //   the same bit validity, then the set of values which may appear
1189            //   in the referent of a `Ptr<T, (_, _, V)>` is the same as the set
1190            //   which may appear in the referent of a `Ptr<UnsafeCell<T>, (_,
1191            //   _, V)>`. Thus, neither `self` nor `ptr` may be used to write a
1192            //   value to the referent which would violate the other's validity
1193            //   invariant.
1194            //
1195            // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1196            //
1197            //   `UnsafeCell<T>` has the same in-memory representation as its
1198            //   inner type `T`. A consequence of this guarantee is that it is
1199            //   possible to convert between `T` and `UnsafeCell<T>`.
1200            let ptr = unsafe { self.project_transmute_unchecked::<_, _, Cast>() };
1201
1202            // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
1203            // and so if `self` is guaranteed to be aligned, then so is the
1204            // returned `Ptr`.
1205            //
1206            // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
1207            //
1208            //   `UnsafeCell<T>` has the same in-memory representation as
1209            //   its inner type `T`. A consequence of this guarantee is that
1210            //   it is possible to convert between `T` and `UnsafeCell<T>`.
1211            let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
1212            ptr.unify_invariants()
1213        }
1214    }
1215}
1216
1217/// Projections through the referent.
1218mod _project {
1219    use super::*;
1220
1221    impl<'a, T, I> Ptr<'a, [T], I>
1222    where
1223        T: 'a,
1224        I: Invariants,
1225        I::Aliasing: Reference,
1226    {
1227        /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
1228        pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
1229            // SAFETY:
1230            // 0. `elem` conforms to the aliasing invariant of `I::Aliasing`
1231            //    because projection does not impact the aliasing invariant.
1232            // 1. `elem`, conditionally, conforms to the validity invariant of
1233            //    `I::Alignment`. If `elem` is projected from data well-aligned
1234            //    for `[T]`, `elem` will be valid for `T`.
1235            // 2. `elem` conforms to the validity invariant of `I::Validity`.
1236            //    Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#array-layout:
1237            //
1238            //      Slices have the same layout as the section of the array they
1239            //      slice.
1240            //
1241            //    Arrays are laid out so that the zero-based `nth` element of
1242            //    the array is offset from the start of the array by `n *
1243            //    size_of::<T>()` bytes. Thus, `elem` addresses a valid `T`
1244            //    within the slice. Since `self` satisfies `I::Validity`, `elem`
1245            //    also satisfies `I::Validity`.
1246            self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) })
1247        }
1248    }
1249
1250    #[allow(clippy::needless_lifetimes)]
1251    impl<'a, T, I> Ptr<'a, T, I>
1252    where
1253        T: 'a + ?Sized + KnownLayout<PointerMetadata = usize>,
1254        I: Invariants,
1255    {
1256        /// The number of slice elements in the object referenced by `self`.
1257        pub(crate) fn len(&self) -> usize {
1258            self.as_inner().meta().get()
1259        }
1260    }
1261}
1262
1263#[cfg(test)]
1264mod tests {
1265    use core::mem::{self, MaybeUninit};
1266
1267    use super::*;
1268    #[allow(unused)] // Needed on our MSRV, but considered unused on later toolchains.
1269    use crate::util::AsAddress;
1270    use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};
1271
1272    mod test_ptr_try_cast_into_soundness {
1273        use super::*;
1274
1275        // This test is designed so that if `Ptr::try_cast_into_xxx` are
1276        // buggy, it will manifest as unsoundness that Miri can detect.
1277
1278        // - If `size_of::<T>() == 0`, `N == 4`
1279        // - Else, `N == 4 * size_of::<T>()`
1280        //
1281        // Each test will be run for each metadata in `metas`.
1282        fn test<T, I, const N: usize>(metas: I)
1283        where
1284            T: ?Sized + KnownLayout + Immutable + FromBytes,
1285            I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
1286        {
1287            let mut bytes = [MaybeUninit::<u8>::uninit(); N];
1288            let initialized = [MaybeUninit::new(0u8); N];
1289            for start in 0..=bytes.len() {
1290                for end in start..=bytes.len() {
1291                    // Set all bytes to uninitialized other than those in
1292                    // the range we're going to pass to `try_cast_from`.
1293                    // This allows Miri to detect out-of-bounds reads
1294                    // because they read uninitialized memory. Without this,
1295                    // some out-of-bounds reads would still be in-bounds of
1296                    // `bytes`, and so might spuriously be accepted.
1297                    bytes = [MaybeUninit::<u8>::uninit(); N];
1298                    let bytes = &mut bytes[start..end];
1299                    // Initialize only the byte range we're going to pass to
1300                    // `try_cast_from`.
1301                    bytes.copy_from_slice(&initialized[start..end]);
1302
1303                    let bytes = {
1304                        let bytes: *const [MaybeUninit<u8>] = bytes;
1305                        #[allow(clippy::as_conversions)]
1306                        let bytes = bytes as *const [u8];
1307                        // SAFETY: We just initialized these bytes to valid
1308                        // `u8`s.
1309                        unsafe { &*bytes }
1310                    };
1311
1312                    // SAFETY: The bytes in `slf` must be initialized.
1313                    unsafe fn validate_and_get_len<
1314                        T: ?Sized + KnownLayout + FromBytes + Immutable,
1315                    >(
1316                        slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
1317                    ) -> usize {
1318                        let t = slf.recall_validity().as_ref();
1319
1320                        let bytes = {
1321                            let len = mem::size_of_val(t);
1322                            let t: *const T = t;
1323                            // SAFETY:
1324                            // - We know `t`'s bytes are all initialized
1325                            //   because we just read it from `slf`, which
1326                            //   points to an initialized range of bytes. If
1327                            //   there's a bug and this doesn't hold, then
1328                            //   that's exactly what we're hoping Miri will
1329                            //   catch!
1330                            // - Since `T: FromBytes`, `T` doesn't contain
1331                            //   any `UnsafeCell`s, so it's okay for `t: T`
1332                            //   and a `&[u8]` to the same memory to be
1333                            //   alive concurrently.
1334                            unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
1335                        };
1336
1337                        // This assertion ensures that `t`'s bytes are read
1338                        // and compared to another value, which in turn
1339                        // ensures that Miri gets a chance to notice if any
1340                        // of `t`'s bytes are uninitialized, which they
1341                        // shouldn't be (see the comment above).
1342                        assert_eq!(bytes, vec![0u8; bytes.len()]);
1343
1344                        mem::size_of_val(t)
1345                    }
1346
1347                    for meta in metas.clone().into_iter() {
1348                        for cast_type in [CastType::Prefix, CastType::Suffix] {
1349                            if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
1350                                .try_cast_into::<T, BecauseImmutable>(cast_type, meta)
1351                            {
1352                                // SAFETY: All bytes in `bytes` have been
1353                                // initialized.
1354                                let len = unsafe { validate_and_get_len(slf) };
1355                                assert_eq!(remaining.len(), bytes.len() - len);
1356                                #[allow(unstable_name_collisions)]
1357                                let bytes_addr = bytes.as_ptr().addr();
1358                                #[allow(unstable_name_collisions)]
1359                                let remaining_addr = remaining.as_inner().as_ptr().addr();
1360                                match cast_type {
1361                                    CastType::Prefix => {
1362                                        assert_eq!(remaining_addr, bytes_addr + len)
1363                                    }
1364                                    CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
1365                                }
1366
1367                                if let Some(want) = meta {
1368                                    let got =
1369                                        KnownLayout::pointer_to_metadata(slf.as_inner().as_ptr());
1370                                    assert_eq!(got, want);
1371                                }
1372                            }
1373                        }
1374
1375                        if let Ok(slf) = Ptr::from_ref(bytes)
1376                            .try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
1377                        {
1378                            // SAFETY: All bytes in `bytes` have been
1379                            // initialized.
1380                            let len = unsafe { validate_and_get_len(slf) };
1381                            assert_eq!(len, bytes.len());
1382
1383                            if let Some(want) = meta {
1384                                let got = KnownLayout::pointer_to_metadata(slf.as_inner().as_ptr());
1385                                assert_eq!(got, want);
1386                            }
1387                        }
1388                    }
1389                }
1390            }
1391        }
1392
1393        #[derive(FromBytes, KnownLayout, Immutable)]
1394        #[repr(C)]
1395        struct SliceDst<T> {
1396            a: u8,
1397            trailing: [T],
1398        }
1399
1400        // Each test case becomes its own `#[test]` function. We do this because
1401        // this test in particular takes far, far longer to execute under Miri
1402        // than all of our other tests combined. Previously, we had these
1403        // execute sequentially in a single test function. We run Miri tests in
1404        // parallel in CI, but this test being sequential meant that most of
1405        // that parallelism was wasted, as all other tests would finish in a
1406        // fraction of the total execution time, leaving this test to execute on
1407        // a single thread for the remainder of the test. By putting each test
1408        // case in its own function, we permit better use of available
1409        // parallelism.
1410        macro_rules! test {
1411            ($test_name:ident: $ty:ty) => {
1412                #[test]
1413                #[allow(non_snake_case)]
1414                fn $test_name() {
1415                    const S: usize = core::mem::size_of::<$ty>();
1416                    const N: usize = if S == 0 { 4 } else { S * 4 };
1417                    test::<$ty, _, N>([None]);
1418
1419                    // If `$ty` is a ZST, then we can't pass `None` as the
1420                    // pointer metadata, or else computing the correct trailing
1421                    // slice length will panic.
1422                    if S == 0 {
1423                        test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
1424                        test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
1425                    } else {
1426                        test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1427                        test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
1428                    }
1429                }
1430            };
1431            ($ty:ident) => {
1432                test!($ty: $ty);
1433            };
1434            ($($ty:ident),*) => { $(test!($ty);)* }
1435        }
1436
1437        test!(empty_tuple: ());
1438        test!(u8, u16, u32, u64, u128, usize, AU64);
1439        test!(i8, i16, i32, i64, i128, isize);
1440        test!(f32, f64);
1441    }
1442
1443    #[test]
1444    fn test_try_cast_into_explicit_count() {
1445        macro_rules! test {
1446            ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
1447                let bytes = [0u8; $bytes];
1448                let ptr = Ptr::from_ref(&bytes[..]);
1449                let res =
1450                    ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
1451                if let Some(expect) = $expect {
1452                    let (ptr, _) = res.unwrap();
1453                    assert_eq!(KnownLayout::pointer_to_metadata(ptr.as_inner().as_ptr()), expect);
1454                } else {
1455                    let _ = res.unwrap_err();
1456                }
1457            }};
1458        }
1459
1460        #[derive(KnownLayout, Immutable)]
1461        #[repr(C)]
1462        struct ZstDst {
1463            u: [u8; 8],
1464            slc: [()],
1465        }
1466
1467        test!(ZstDst, 8, 0, Some(0));
1468        test!(ZstDst, 7, 0, None);
1469
1470        test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
1471        test!(ZstDst, 7, usize::MAX, None);
1472
1473        #[derive(KnownLayout, Immutable)]
1474        #[repr(C)]
1475        struct Dst {
1476            u: [u8; 8],
1477            slc: [u8],
1478        }
1479
1480        test!(Dst, 8, 0, Some(0));
1481        test!(Dst, 7, 0, None);
1482
1483        test!(Dst, 9, 1, Some(1));
1484        test!(Dst, 8, 1, None);
1485
1486        // If we didn't properly check for overflow, this would cause the
1487        // metadata to overflow to 0, and thus the cast would spuriously
1488        // succeed.
1489        test!(Dst, 8, usize::MAX - 8 + 1, None);
1490    }
1491}