1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//! Constructors for creating random matrices.
//!
//! This module provides functions and builders for creating matrices filled with random values
//! from various distributions such as normal distribution and uniform distribution.

use crate::{
    dim::DimTrait,
    matrix::{MatrixBase, OwnedMatrix},
    matrix_impl::Matrix,
    memory_impl::OwnedMem,
    num::Num,
};
use rand::prelude::*;
use rand_distr::{num_traits::Float, uniform::SampleUniform, Normal, StandardNormal, Uniform};

/// Creates a matrix filled with random values from a normal distribution.
///
/// # Arguments
///
/// * `mean` - The mean of the normal distribution.
/// * `std_dev` - The standard deviation of the normal distribution.
/// * `shape` - The shape of the matrix.
/// * `seed` - An optional seed for the random number generator.
pub fn normal<T: Num, D: DimTrait>(
    mean: T,
    std_dev: T,
    shape: D,
    seed: Option<u64>,
) -> Matrix<OwnedMem<T>, D>
where
    StandardNormal: Distribution<T>,
{
    let mut rng: Box<dyn RngCore> = if let Some(seed) = seed {
        Box::new(StdRng::seed_from_u64(seed))
    } else {
        Box::new(thread_rng())
    };
    let normal = Normal::new(mean, std_dev).unwrap();
    let mut data = Vec::with_capacity(shape.num_elm());
    for _ in 0..shape.num_elm() {
        data.push(normal.sample(&mut *rng));
    }
    Matrix::from_vec(data, shape)
}

/// Creates a matrix filled with random values from a normal distribution with the same shape as another matrix.
///
/// # Arguments
///
/// * `mean` - The mean of the normal distribution.
/// * `std_dev` - The standard deviation of the normal distribution.
/// * `a` - The matrix whose shape is used.
/// * `seed` - An optional seed for the random number generator.
pub fn normal_like<T: Num, D: DimTrait>(
    mean: T,
    std_dev: T,
    a: &Matrix<OwnedMem<T>, D>,
    seed: Option<u64>,
) -> Matrix<OwnedMem<T>, D>
where
    StandardNormal: Distribution<T>,
{
    normal(mean, std_dev, a.shape(), seed)
}

/// Creates a matrix filled with random values from a uniform distribution.
///
/// # Arguments
///
/// * `low` - The lower bound of the uniform distribution.
/// * `high` - The upper bound of the uniform distribution.
/// * `shape` - The shape of the matrix.
/// * `seed` - An optional seed for the random number generator.
pub fn uniform<T, D: DimTrait>(
    low: T,
    high: T,
    shape: D,
    seed: Option<u64>,
) -> Matrix<OwnedMem<T>, D>
where
    T: Num,
    Uniform<T>: Distribution<T>,
{
    let mut rng: Box<dyn RngCore> = if let Some(seed) = seed {
        Box::new(StdRng::seed_from_u64(seed))
    } else {
        Box::new(thread_rng())
    };
    let uniform = Uniform::new(low, high);
    let mut data = Vec::with_capacity(shape.num_elm());
    for _ in 0..shape.num_elm() {
        data.push(uniform.sample(&mut *rng));
    }
    Matrix::from_vec(data, shape)
}

/// Creates a matrix filled with random values from a uniform distribution with the same shape as another matrix.
///
/// # Arguments
///
/// * `low` - The lower bound of the uniform distribution.
/// * `high` - The upper bound of the uniform distribution.
/// * `a` - The matrix whose shape is used.
/// * `seed` - An optional seed for the random number generator.
pub fn uniform_like<T, D: DimTrait>(
    low: T,
    high: T,
    a: &Matrix<OwnedMem<T>, D>,
    seed: Option<u64>,
) -> Matrix<OwnedMem<T>, D>
where
    T: Num,
    Uniform<T>: Distribution<T>,
{
    uniform(low, high, a.shape(), seed)
}

/// A builder for creating matrices filled with random values from a normal distribution.
#[derive(Debug, Clone, Default)]
pub struct NormalBuilder<T: Num + Float, D: DimTrait> {
    mean: Option<T>,
    std_dev: Option<T>,
    shape: Option<D>,
    seed: Option<u64>,
}

impl<T, D> NormalBuilder<T, D>
where
    T: Num,
    D: DimTrait,
{
    /// Creates a new `NormalBuilder`.
    pub fn new() -> Self {
        NormalBuilder {
            mean: None,
            std_dev: None,
            shape: None,
            seed: None,
        }
    }

    /// Sets the mean of the normal distribution.
    pub fn mean(mut self, mean: T) -> Self {
        self.mean = Some(mean);
        self
    }

    /// Sets the standard deviation of the normal distribution.
    pub fn std_dev(mut self, std_dev: T) -> Self {
        self.std_dev = Some(std_dev);
        self
    }

    /// Sets the shape of the matrix.
    pub fn shape(mut self, shape: D) -> Self {
        self.shape = Some(shape);
        self
    }

    /// Sets the seed for the random number generator.
    pub fn seed(mut self, seed: u64) -> Self {
        self.seed = Some(seed);
        self
    }

    /// Sets the shape of the matrix to be the same as another matrix.
    pub fn from_matrix<M: MatrixBase<Dim = D>>(mut self, a: &M) -> Self {
        self.shape = Some(a.shape());
        self
    }

    /// Builds the matrix.
    pub fn build(self) -> Matrix<OwnedMem<T>, D>
    where
        StandardNormal: Distribution<T>,
    {
        if self.mean.is_none() || self.std_dev.is_none() || self.shape.is_none() {
            panic!("mean, std_dev, and shape must be set");
        }
        normal(
            self.mean.unwrap(),
            self.std_dev.unwrap(),
            self.shape.unwrap(),
            self.seed,
        )
    }
}

/// A builder for creating matrices filled with random values from a uniform distribution.
#[derive(Debug, Clone, Default)]
pub struct UniformBuilder<T, D> {
    low: Option<T>,
    high: Option<T>,
    shape: Option<D>,
    seed: Option<u64>,
}

impl<T, D> UniformBuilder<T, D>
where
    T: Num + Float + SampleUniform,
    Uniform<T>: Distribution<T>,
    D: DimTrait,
{
    /// Creates a new `UniformBuilder`.
    pub fn new() -> Self {
        UniformBuilder {
            low: None,
            high: None,
            shape: None,
            seed: None,
        }
    }

    /// Sets the lower bound of the uniform distribution.
    pub fn low(mut self, low: T) -> Self {
        self.low = Some(low);
        self
    }

    /// Sets the upper bound of the uniform distribution.
    pub fn high(mut self, high: T) -> Self {
        self.high = Some(high);
        self
    }

    /// Sets the shape of the matrix.
    pub fn shape(mut self, shape: D) -> Self {
        self.shape = Some(shape);
        self
    }

    /// Sets the seed for the random number generator.
    pub fn seed(mut self, seed: u64) -> Self {
        self.seed = Some(seed);
        self
    }

    /// Sets the shape of the matrix to be the same as another matrix.
    pub fn from_matrix<M: MatrixBase<Dim = D>>(mut self, a: &M) -> Self {
        self.shape = Some(a.shape());
        self
    }

    /// Builds the matrix.
    pub fn build(self) -> Matrix<OwnedMem<T>, D> {
        if self.low.is_none() || self.high.is_none() || self.shape.is_none() {
            panic!("low, high, and shape must be set");
        }
        uniform(
            self.low.unwrap(),
            self.high.unwrap(),
            self.shape.unwrap(),
            self.seed,
        )
    }
}