zenu_layer/layers/rnn/
lstm.rs1use rand_distr::{Distribution, StandardNormal};
2use zenu_autograd::{
3 nn::rnns::{lstm::naive::lstm_naive, weights::LSTMCell},
4 Variable,
5};
6
7#[cfg(feature = "nvidia")]
8use zenu_autograd::nn::rnns::lstm::cudnn::lstm_cudnn;
9
10use zenu_matrix::{device::Device, num::Num};
11
12use crate::{Module, ModuleParameters, Parameters};
13
14use super::{builder::RNNSLayerBuilder, inner::RNNInner};
15
16pub struct LSTMInput<T: Num, D: Device> {
17 pub x: Variable<T, D>,
18 pub hx: Variable<T, D>,
19 pub cx: Variable<T, D>,
20}
21
22impl<T: Num, D: Device> ModuleParameters<T, D> for LSTMInput<T, D> {}
23
24impl<T: Num, D: Device> RNNInner<T, D, LSTMCell> {
25 fn forward(&self, input: LSTMInput<T, D>) -> Variable<T, D> {
26 #[cfg(feature = "nvidia")]
27 if self.is_cudnn {
28 let desc = self.desc.as_ref().unwrap();
29 let weights = self.cudnn_weights.as_ref().unwrap();
30
31 let out = lstm_cudnn(
32 desc.clone(),
33 input.x.to(),
34 Some(input.hx.to()),
35 Some(input.cx.to()),
36 weights.to(),
37 self.is_training,
38 );
39
40 return out.to();
41 }
42
43 lstm_naive(
44 input.x,
45 input.hx,
46 input.cx,
47 self.weights.as_ref().unwrap(),
48 self.is_bidirectional,
49 )
50 }
51}
52
53pub struct LSTM<T: Num, D: Device>(RNNInner<T, D, LSTMCell>);
54
55impl<T: Num, D: Device> Parameters<T, D> for LSTM<T, D> {
56 fn weights(&self) -> std::collections::HashMap<String, Variable<T, D>> {
57 self.0.weights()
58 }
59
60 fn biases(&self) -> std::collections::HashMap<String, Variable<T, D>> {
61 self.0.biases()
62 }
63
64 fn load_parameters(&mut self, parameters: std::collections::HashMap<String, Variable<T, D>>) {
65 self.0.load_parameters(parameters);
66 }
67}
68
69impl<T: Num, D: Device> Module<T, D> for LSTM<T, D> {
70 type Input = LSTMInput<T, D>;
71 type Output = Variable<T, D>;
72
73 fn call(&self, input: Self::Input) -> Self::Output {
74 self.0.forward(input)
75 }
76}
77
78pub type LSTMBuilder<T, D> = RNNSLayerBuilder<T, D, LSTMCell>;
79
80impl<T: Num, D: Device> RNNSLayerBuilder<T, D, LSTMCell>
81where
82 StandardNormal: Distribution<T>,
83{
84 pub fn build_lstm(self) -> LSTM<T, D> {
85 LSTM(self.build_inner())
86 }
87}