1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
//! # Linear Layer
//!
//! This module provides an implementation of a linear layer for a neural network.
//! The linear layer performs a linear transformation on the input data using a weight matrix and a bias vector.
//!
//! ## Usage
//!
//! To create a new linear layer, use the `Linear::new(in_dim, out_dim)` function, specifying the input and output dimensions.
//! The layer parameters (weight and bias) can be initialized using the `init_parameters(&mut self, seed: Option<u64>)` method.
//!
//! To use the linear layer in a forward pass, call the `call(&self, input: Variable<T>) -> Variable<T>` method, passing the input data as a `Variable`.
//! The output of the layer will be returned as a new `Variable`.
//!
//! To access the layer parameters, use the `parameters(&self) -> Vec<Variable<T>>` method, which returns a vector of the weight and bias variables.
//! To load pre-trained parameters into the layer, use the `load_parameters(&mut self, parameters: &[Variable<T>])` method, passing a slice of variables.
//!
//! ## Example
//!
//! ```rust
//! use zenu_autograd::creator::from_vec::from_vec;
//! use zenu_layer::layers::linear::Linear;
//! use zenu_layer::Layer;
//!
//! // Create a new linear layer with input dimension 3 and output dimension 2
//! let mut linear_layer = Linear::new(3, 2);
//!
//! // Initialize the layer parameters with a random seed
//! linear_layer.init_parameters(Some(42));
//!
//! // Create input data as a Variable
//! let input = from_vec(vec![1., 2., 3.], [1, 3]);
//!
//! // Perform a forward pass through the layer
//! let output = linear_layer.call(input);
//!
//! // Access the layer parameters
//! let parameters = linear_layer.parameters();
//! ```
//!
//! ## Layer Trait Implementation
//!
//! The `Linear` struct implements the `Layer` trait, which defines the following methods:
//!
//! - `init_parameters(&mut self, seed: Option<u64>)`: Initializes the layer parameters (weight and bias) randomly or with a specified seed.
//! - `parameters(&self) -> Vec<Variable<T>>`: Returns a vector of the layer parameters as `Variable`s.
//! - `load_parameters(&mut self, parameters: &[Variable<T>])`: Loads pre-trained parameters into the layer.
//! - `call(&self, input: Variable<T>) -> Variable<T>`: Performs a forward pass through the layer, applying the linear transformation to the input.
//! - `shape_check(&self, input: &Variable<T>)`: Checks the shape of the input data to ensure compatibility with the layer.
//!
//! ## Type Parameters
//!
//! - `T`: The numeric type used for the layer parameters and computations. It must implement the `Num` trait.
//!
//! ## Fields
//!
//! - `in_dim`: The input dimension of the layer.
//! - `out_dim`: The output dimension of the layer.
//! - `weight`: The weight matrix of the layer, stored as an `Option<Variable<T>>`.
//! - `bias`: The bias vector of the layer, stored as an `Option<Variable<T>>`.
use rand_distr::{Distribution, StandardNormal};
use zenu_autograd::{
creator::{rand::normal, zeros::zeros},
functions::matmul::matmul,
Variable,
};
use zenu_matrix::{dim::DimTrait, matrix::MatrixBase, num::Num};
use crate::Layer;
/// A linear layer in a neural network.
pub struct Linear<T: Num> {
in_dim: usize,
out_dim: usize,
weight: Option<Variable<T>>,
bias: Option<Variable<T>>,
}
impl<T: Num> Linear<T> {
/// Creates a new linear layer with the specified input and output dimensions.
///
/// # Arguments
///
/// * `in_dim` - The input dimension of the layer.
/// * `out_dim` - The output dimension of the layer.
///
/// # Returns
///
/// A new `Linear` instance.
#[must_use]
pub fn new(in_dim: usize, out_dim: usize) -> Self {
Linear {
in_dim,
out_dim,
weight: None,
bias: None,
}
}
}
impl<T: Num> Layer<T> for Linear<T> {
/// Initializes the layer parameters (weight and bias) randomly or with a specified seed.
///
/// # Arguments
///
/// * `seed` - An optional seed value for reproducible parameter initialization.
fn init_parameters(&mut self, seed: Option<u64>)
where
StandardNormal: Distribution<T>,
{
let bias = zeros([self.out_dim]);
bias.set_is_train(true);
self.bias = Some(bias);
let weight = normal(T::zero(), T::one(), seed, [self.in_dim, self.out_dim]);
weight.set_is_train(true);
self.weight = Some(weight);
}
/// Returns a vector of the layer parameters as `Variable`s.
///
/// # Returns
///
/// A vector containing the weight and bias variables of the layer.
fn parameters(&self) -> Vec<Variable<T>> {
vec![self.weight.clone().unwrap(), self.bias.clone().unwrap()]
}
/// Loads pre-trained parameters into the layer.
///
/// # Arguments
///
/// * `parameters` - A slice of `Variable`s containing the weight and bias parameters.
///
/// # Panics
///
/// Panics if the number of parameters is not 2, or if the shapes of the parameters are invalid.
fn load_parameters(&mut self, parameters: &[Variable<T>]) {
assert_eq!(parameters.len(), 2, "parameters must be 2");
assert_eq!(
parameters[0].get_data().shape().len(),
2,
"weight must be 2D"
);
assert_eq!(parameters[1].get_data().shape().len(), 1, "bias must be 1D");
self.weight = Some(parameters[0].clone());
self.bias = Some(parameters[1].clone());
}
/// Performs a forward pass through the layer, applying the linear transformation to the input.
///
/// # Arguments
///
/// * `input` - The input data as a `Variable`.
///
/// # Returns
///
/// The output of the layer as a new `Variable`.
///
/// # Panics
///
/// Panics if the weight or bias parameters are not initialized.
fn call(&self, input: Variable<T>) -> Variable<T> {
assert!(self.weight.is_some(), "weight is not initialized");
assert!(self.bias.is_some(), "bias is not initialized");
let weight = self.weight.clone().unwrap();
let bias = self.bias.clone().unwrap();
self.shape_check(&input);
let output = matmul(input, weight);
output + bias
}
/// Checks the shape of the input data to ensure compatibility with the layer.
///
/// # Arguments
///
/// * `input` - The input data as a reference to a `Variable`.
///
/// # Panics
///
/// Panics if the input shape is not 2D or if the input dimension does not match the layer's input dimension.
fn shape_check(&self, input: &Variable<T>) {
assert_eq!(input.get_data().shape().len(), 2, "input shape must be 2D");
assert_eq!(
input.get_data().shape()[1],
self.in_dim,
"input shape must be (batch_size, {})",
self.in_dim
);
}
}
#[cfg(test)]
mod tests {
use zenu_autograd::creator::from_vec::from_vec;
use zenu_matrix::{matrix::OwnedMatrix, matrix_impl::OwnedMatrixDyn, operation::asum::Asum};
use crate::Layer;
use super::Linear;
#[test]
fn linear_batch_size_1() {
let weight = from_vec(vec![1., 2., 3., 4., 5., 6.], [3, 2]);
let bias = from_vec(vec![1., 2.], [2]);
let mut linear_layer = Linear::new(3, 2);
linear_layer.load_parameters(&[weight.clone(), bias.clone()]);
let x = from_vec(vec![1., 2., 3.], [1, 3]);
let y = linear_layer.call(x);
y.backward();
let y_data = y.get_data();
let ans = OwnedMatrixDyn::from_vec(vec![23., 30.], [1, 2]);
let diff = y_data - ans;
assert!(diff.asum() < 1e-6);
let bias_grad = bias.get_grad().unwrap().get_data();
let weight_grad = weight.get_grad().unwrap().get_data();
let bias_ans = OwnedMatrixDyn::from_vec(vec![1., 1.], [2]);
let weight_ans = OwnedMatrixDyn::from_vec(vec![1., 1., 2., 2., 3., 3.], [3, 2]);
let diff_bias = bias_grad - bias_ans;
let diff_weight = weight_grad - weight_ans;
let diff_bias_asum = diff_bias.asum();
let diff_weight_asum = diff_weight.asum();
assert!(diff_bias_asum < 1e-6);
assert!(diff_weight_asum < 1e-6);
}
#[test]
fn linear_batch_size_16() {
let weight = from_vec(vec![1., 2., 3., 4., 5., 6.], [3, 2]);
let bias = from_vec(vec![1., 2.], [2]);
let mut linear_layer = Linear::new(3, 2);
linear_layer.load_parameters(&[weight.clone(), bias.clone()]);
let mut vec = Vec::new();
for i in 1..=16 * 3 {
vec.push(i as f64);
}
let x = from_vec(vec, [16, 3]);
let y = linear_layer.call(x);
y.backward();
let y_data = y.get_data();
let y_ans = OwnedMatrixDyn::from_vec(
vec![
23., 30., 50., 66., 77., 102., 104., 138., 131., 174., 158., 210., 185., 246.,
212., 282., 239., 318., 266., 354., 293., 390., 320., 426., 347., 462., 374., 498.,
401., 534., 428., 570.,
],
[16, 2],
);
let diff = y_data - y_ans;
assert!(diff.asum() < 1e-6);
let bias_grad = bias.get_grad().unwrap().get_data();
let weight_grad = weight.get_grad().unwrap().get_data();
let bias_ans = OwnedMatrixDyn::from_vec(vec![16., 16.], [2]);
let weight_ans = OwnedMatrixDyn::from_vec(vec![376., 376., 392., 392., 408., 408.], [3, 2]);
let diff_bias = bias_grad - bias_ans;
let diff_weight = weight_grad - weight_ans;
let diff_bias_asum = diff_bias.asum();
let diff_weight_asum = diff_weight.asum();
assert!(diff_bias_asum < 1e-6);
assert!(diff_weight_asum < 1e-6);
}
}