1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
//
// Copyright (c) 2023 ZettaScale Technology
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License 2.0 which is available at
// http://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
//
// Contributors:
// ZettaScale Zenoh Team, <zenoh@zettascale.tech>
//
use async_std::prelude::*;
use async_std::sync::Mutex;
use async_std::task;
use async_trait::async_trait;
use flume::{bounded, Receiver, RecvError, Sender};
use std::cmp::Ordering as ComparisonOrdering;
use std::collections::BinaryHeap;
use std::sync::atomic::{AtomicBool, Ordering as AtomicOrdering};
use std::sync::{Arc, Weak};
use std::time::{Duration, Instant};
use zenoh_core::zconfigurable;
zconfigurable! {
static ref TIMER_EVENTS_CHANNEL_SIZE: usize = 1;
}
#[async_trait]
pub trait Timed {
async fn run(&mut self);
}
type TimedFuture = Arc<dyn Timed + Send + Sync>;
#[derive(Clone)]
pub struct TimedHandle(Weak<AtomicBool>);
impl TimedHandle {
pub fn defuse(self) {
if let Some(arc) = self.0.upgrade() {
arc.store(false, AtomicOrdering::Release);
}
}
}
#[derive(Clone)]
pub struct TimedEvent {
when: Instant,
period: Option<Duration>,
future: TimedFuture,
fused: Arc<AtomicBool>,
}
impl TimedEvent {
pub fn once(when: Instant, event: impl Timed + Send + Sync + 'static) -> TimedEvent {
TimedEvent {
when,
period: None,
future: Arc::new(event),
fused: Arc::new(AtomicBool::new(true)),
}
}
pub fn periodic(interval: Duration, event: impl Timed + Send + Sync + 'static) -> TimedEvent {
TimedEvent {
when: Instant::now() + interval,
period: Some(interval),
future: Arc::new(event),
fused: Arc::new(AtomicBool::new(true)),
}
}
pub fn is_fused(&self) -> bool {
self.fused.load(AtomicOrdering::Acquire)
}
pub fn get_handle(&self) -> TimedHandle {
TimedHandle(Arc::downgrade(&self.fused))
}
}
impl Eq for TimedEvent {}
impl Ord for TimedEvent {
fn cmp(&self, other: &Self) -> ComparisonOrdering {
// The usual cmp is defined as: self.when.cmp(&other.when)
// This would make the events odered from largets to the smallest in the heap.
// However, we want the events to be ordered from the smallets to the largest.
// As a consequence of this, we swap the comparison terms, converting the heap
// from a max-heap into a min-heap.
other.when.cmp(&self.when)
}
}
impl PartialOrd for TimedEvent {
fn partial_cmp(&self, other: &Self) -> Option<ComparisonOrdering> {
Some(self.cmp(other))
}
}
impl PartialEq for TimedEvent {
fn eq(&self, other: &Self) -> bool {
self.when == other.when
}
}
async fn timer_task(
events: Arc<Mutex<BinaryHeap<TimedEvent>>>,
new_event: Receiver<(bool, TimedEvent)>,
) -> Result<(), RecvError> {
// Error message
let e = "Timer has been dropped. Unable to run timed events.";
// Acquire the lock
let mut events = events.lock().await;
loop {
// Fuuture for adding new events
let new = new_event.recv_async();
match events.peek() {
Some(next) => {
// Future for waiting an event timing
let wait = async {
let next = next.clone();
let now = Instant::now();
if next.when > now {
task::sleep(next.when - now).await;
}
Ok((false, next))
};
match new.race(wait).await {
Ok((is_new, mut ev)) => {
if is_new {
// A new event has just been added: push it onto the heap
events.push(ev);
continue;
}
// We are ready to serve the event, remove it from the heap
let _ = events.pop();
// Execute the future if the event is fused
if ev.is_fused() {
// Now there is only one Arc pointing to the event future
// It is safe to access and execute to the inner future as mutable
Arc::get_mut(&mut ev.future).unwrap().run().await;
// Check if the event is periodic
if let Some(interval) = ev.period {
ev.when = Instant::now() + interval;
events.push(ev);
}
}
}
Err(_) => {
// Channel error
log::trace!("{}", e);
return Ok(());
}
}
}
None => match new.await {
Ok((_, ev)) => {
events.push(ev);
continue;
}
Err(_) => {
// Channel error
log::trace!("{}", e);
return Ok(());
}
},
}
}
}
#[derive(Clone)]
pub struct Timer {
events: Arc<Mutex<BinaryHeap<TimedEvent>>>,
sl_sender: Option<Sender<()>>,
ev_sender: Option<Sender<(bool, TimedEvent)>>,
}
impl Timer {
pub fn new(spawn_blocking: bool) -> Timer {
// Create the channels
let (ev_sender, ev_receiver) = bounded::<(bool, TimedEvent)>(*TIMER_EVENTS_CHANNEL_SIZE);
let (sl_sender, sl_receiver) = bounded::<()>(1);
// Create the timer object
let timer = Timer {
events: Arc::new(Mutex::new(BinaryHeap::new())),
sl_sender: Some(sl_sender),
ev_sender: Some(ev_sender),
};
// Start the timer task
let c_e = timer.events.clone();
let fut = async move {
let _ = sl_receiver
.recv_async()
.race(timer_task(c_e, ev_receiver))
.await;
log::trace!("A - Timer task no longer running...");
};
if spawn_blocking {
task::spawn_blocking(|| task::block_on(fut));
} else {
task::spawn(fut);
}
// Return the timer object
timer
}
pub fn start(&mut self, spawn_blocking: bool) {
if self.sl_sender.is_none() {
// Create the channels
let (ev_sender, ev_receiver) =
bounded::<(bool, TimedEvent)>(*TIMER_EVENTS_CHANNEL_SIZE);
let (sl_sender, sl_receiver) = bounded::<()>(1);
// Store the channels handlers
self.sl_sender = Some(sl_sender);
self.ev_sender = Some(ev_sender);
// Start the timer task
let c_e = self.events.clone();
let fut = async move {
let _ = sl_receiver
.recv_async()
.race(timer_task(c_e, ev_receiver))
.await;
log::trace!("A - Timer task no longer running...");
};
if spawn_blocking {
task::spawn_blocking(|| task::block_on(fut));
} else {
task::spawn(fut);
}
}
}
#[inline]
pub async fn start_async(&mut self, spawn_blocking: bool) {
self.start(spawn_blocking)
}
pub fn stop(&mut self) {
if let Some(sl_sender) = &self.sl_sender {
// Stop the timer task
let _ = sl_sender.send(());
log::trace!("Stopping timer...");
// Remove the channels handlers
self.sl_sender = None;
self.ev_sender = None;
}
}
pub async fn stop_async(&mut self) {
if let Some(sl_sender) = &self.sl_sender {
// Stop the timer task
let _ = sl_sender.send_async(()).await;
log::trace!("Stopping timer...");
// Remove the channels handlers
self.sl_sender = None;
self.ev_sender = None;
}
}
pub fn add(&self, event: TimedEvent) {
if let Some(ev_sender) = &self.ev_sender {
let _ = ev_sender.send((true, event));
}
}
pub async fn add_async(&self, event: TimedEvent) {
if let Some(ev_sender) = &self.ev_sender {
let _ = ev_sender.send_async((true, event)).await;
}
}
}
impl Default for Timer {
fn default() -> Self {
Self::new(false)
}
}
mod tests {
#[test]
fn timer() {
use super::{Timed, TimedEvent, Timer};
use async_std::task;
use async_trait::async_trait;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use std::time::{Duration, Instant};
#[derive(Clone)]
struct MyEvent {
counter: Arc<AtomicUsize>,
}
#[async_trait]
impl Timed for MyEvent {
async fn run(&mut self) {
self.counter.fetch_add(1, Ordering::SeqCst);
}
}
async fn run() {
// Create the timer
let mut timer = Timer::new(false);
// Counter for testing
let counter = Arc::new(AtomicUsize::new(0));
// Create my custom event
let myev = MyEvent {
counter: counter.clone(),
};
// Default testing interval: 1 s
let interval = Duration::from_secs(1);
/* [1] */
println!("Timer [1]: Once event and run");
// Fire a once timed event
let now = Instant::now();
let event = TimedEvent::once(now + (2 * interval), myev.clone());
// Add the event to the timer
timer.add_async(event).await;
// Wait for the event to occur
task::sleep(3 * interval).await;
// Load and reset the counter value
let value = counter.swap(0, Ordering::SeqCst);
assert_eq!(value, 1);
/* [2] */
println!("Timer [2]: Once event and defuse");
// Fire a once timed event and defuse it before it is executed
let now = Instant::now();
let event = TimedEvent::once(now + (2 * interval), myev.clone());
let handle = event.get_handle();
// Add the event to the timer
timer.add_async(event).await;
//
handle.defuse();
// Wait for the event to occur
task::sleep(3 * interval).await;
// Load and reset the counter value
let value = counter.swap(0, Ordering::SeqCst);
assert_eq!(value, 0);
/* [3] */
println!("Timer [3]: Periodic event run and defuse");
// Number of events to occur
let amount: usize = 3;
// Half the waiting interval for granularity reasons
let to_elapse = (2 * amount as u32) * interval;
// Fire a periodic event
let event = TimedEvent::periodic(2 * interval, myev.clone());
let handle = event.get_handle();
// Add the event to the timer
timer.add_async(event).await;
// Wait for the events to occur
task::sleep(to_elapse + interval).await;
// Load and reset the counter value
let value = counter.swap(0, Ordering::SeqCst);
assert_eq!(value, amount);
// Defuse the event (check if twice defusing don't cause troubles)
handle.clone().defuse();
handle.defuse();
// Wait a bit more to verify that not more events have been fired
task::sleep(to_elapse).await;
// Load and reset the counter value
let value = counter.swap(0, Ordering::SeqCst);
assert_eq!(value, 0);
/* [4] */
println!("Timer [4]: Periodic event and stop/start timer");
// Fire a periodic event
let event = TimedEvent::periodic(2 * interval, myev);
// Add the event to the timer
timer.add_async(event).await;
// Wait for the events to occur
task::sleep(to_elapse + interval).await;
// Load and reset the counter value
let value = counter.swap(0, Ordering::SeqCst);
assert_eq!(value, amount);
// Stop the timer
timer.stop_async().await;
// Wait some time
task::sleep(to_elapse).await;
// Load and reset the counter value
let value = counter.swap(0, Ordering::SeqCst);
assert_eq!(value, 0);
// Restart the timer
timer.start_async(false).await;
// Wait for the events to occur
task::sleep(to_elapse).await;
// Load and reset the counter value
let value = counter.swap(0, Ordering::SeqCst);
assert_eq!(value, amount);
}
task::block_on(run());
}
}