zenoh_keyexpr/key_expr/borrowed.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
//
// Copyright (c) 2023 ZettaScale Technology
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License 2.0 which is available at
// http://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
//
// Contributors:
// ZettaScale Zenoh Team, <zenoh@zettascale.tech>
//
#[cfg(feature = "internal")]
use alloc::vec::Vec;
use alloc::{
borrow::{Borrow, ToOwned},
format,
string::String,
};
use core::{
convert::{TryFrom, TryInto},
fmt,
ops::{Deref, Div},
};
use zenoh_result::{bail, Error as ZError, ZResult};
use super::{canon::Canonize, OwnedKeyExpr, FORBIDDEN_CHARS};
/// A [`str`] newtype that is statically known to be a valid key expression.
///
/// The exact key expression specification can be found [here](https://github.com/eclipse-zenoh/roadmap/blob/main/rfcs/ALL/Key%20Expressions.md). Here are the major lines:
/// * Key expressions are conceptually a `/`-separated list of UTF-8 string typed chunks. These chunks are not allowed to be empty.
/// * Key expressions must be valid UTF-8 strings.
/// Be aware that Zenoh does not perform UTF normalization for you, so get familiar with that concept if your key expression contains glyphs that may have several unicode representation, such as accented characters.
/// * Key expressions may never start or end with `'/'`, nor contain `"//"` or any of the following characters: `#$?`
/// * Key expression must be in canon-form (this ensure that key expressions representing the same set are always the same string).
/// Note that safe constructors will perform canonization for you if this can be done without extraneous allocations.
///
/// Since Key Expressions define sets of keys, you may want to be aware of the hierarchy of [relations](keyexpr::relation_to) between such sets:
/// * Trivially, two sets can have no elements in common: `a/**` and `b/**` for example define two disjoint sets of keys.
/// * Two sets [intersect](keyexpr::intersects()) if they have at least one element in common. `a/*` intersects `*/a` on `a/a` for example.
/// * One set A [includes](keyexpr::includes()) the other set B if all of B's elements are in A: `a/*/**` includes `a/b/**`
/// * Two sets A and B are equal if all A includes B and B includes A. The Key Expression language is designed so that string equality is equivalent to set equality.
#[allow(non_camel_case_types)]
#[repr(transparent)]
#[derive(PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct keyexpr(str);
impl keyexpr {
/// Equivalent to `<&keyexpr as TryFrom>::try_from(t)`.
///
/// Will return an Err if `t` isn't a valid key expression.
/// Note that to be considered a valid key expression, a string MUST be canon.
///
/// [`keyexpr::autocanonize`] is an alternative constructor that will canonize the passed expression before constructing it.
pub fn new<'a, T, E>(t: &'a T) -> Result<&'a Self, E>
where
&'a Self: TryFrom<&'a T, Error = E>,
T: ?Sized,
{
t.try_into()
}
/// Canonizes the passed value before returning it as a `&keyexpr`.
///
/// Will return Err if the passed value isn't a valid key expression despite canonization.
///
/// Note that this function does not allocate, and will instead mutate the passed value in place during canonization.
pub fn autocanonize<'a, T, E>(t: &'a mut T) -> Result<&'a Self, E>
where
&'a Self: TryFrom<&'a T, Error = E>,
T: Canonize + ?Sized,
{
t.canonize();
Self::new(t)
}
/// Returns `true` if the `keyexpr`s intersect, i.e. there exists at least one key which is contained in both of the sets defined by `self` and `other`.
pub fn intersects(&self, other: &Self) -> bool {
use super::intersect::Intersector;
super::intersect::DEFAULT_INTERSECTOR.intersect(self, other)
}
/// Returns `true` if `self` includes `other`, i.e. the set defined by `self` contains every key belonging to the set defined by `other`.
pub fn includes(&self, other: &Self) -> bool {
use super::include::Includer;
super::include::DEFAULT_INCLUDER.includes(self, other)
}
/// Returns the relation between `self` and `other` from `self`'s point of view ([`SetIntersectionLevel::Includes`] signifies that `self` includes `other`).
///
/// Note that this is slower than [`keyexpr::intersects`] and [`keyexpr::includes`], so you should favor these methods for most applications.
#[cfg(feature = "unstable")]
pub fn relation_to(&self, other: &Self) -> SetIntersectionLevel {
use SetIntersectionLevel::*;
if self.intersects(other) {
if self == other {
Equals
} else if self.includes(other) {
Includes
} else {
Intersects
}
} else {
Disjoint
}
}
/// Joins both sides, inserting a `/` in between them.
///
/// This should be your preferred method when concatenating path segments.
///
/// This is notably useful for workspaces:
/// ```rust
/// # use core::convert::TryFrom;
/// # use zenoh_keyexpr::OwnedKeyExpr;
/// # let get_workspace = || OwnedKeyExpr::try_from("some/workspace").unwrap();
/// let workspace: OwnedKeyExpr = get_workspace();
/// let topic = workspace.join("some/topic").unwrap();
/// ```
///
/// If `other` is of type `&keyexpr`, you may use `self / other` instead, as the joining becomes infallible.
pub fn join<S: AsRef<str> + ?Sized>(&self, other: &S) -> ZResult<OwnedKeyExpr> {
OwnedKeyExpr::autocanonize(format!("{}/{}", self, other.as_ref()))
}
/// Returns `true` if `self` contains any wildcard character (`**` or `$*`).
#[cfg(feature = "internal")]
#[doc(hidden)]
pub fn is_wild(&self) -> bool {
self.is_wild_impl()
}
pub(crate) fn is_wild_impl(&self) -> bool {
self.0.contains(super::SINGLE_WILD as char)
}
pub(crate) const fn is_double_wild(&self) -> bool {
let bytes = self.0.as_bytes();
bytes.len() == 2 && bytes[0] == b'*'
}
/// Returns the longest prefix of `self` that doesn't contain any wildcard character (`**` or `$*`).
///
/// NOTE: this operation can typically be used in a backend implementation, at creation of a Storage to get the keys prefix,
/// and then in `zenoh_backend_traits::Storage::on_sample()` this prefix has to be stripped from all received
/// `Sample::key_expr` to retrieve the corresponding key.
///
/// # Examples:
/// ```
/// # use zenoh_keyexpr::keyexpr;
/// assert_eq!(
/// Some(keyexpr::new("demo/example").unwrap()),
/// keyexpr::new("demo/example/**").unwrap().get_nonwild_prefix());
/// assert_eq!(
/// Some(keyexpr::new("demo").unwrap()),
/// keyexpr::new("demo/**/test/**").unwrap().get_nonwild_prefix());
/// assert_eq!(
/// Some(keyexpr::new("demo/example/test").unwrap()),
/// keyexpr::new("demo/example/test").unwrap().get_nonwild_prefix());
/// assert_eq!(
/// Some(keyexpr::new("demo").unwrap()),
/// keyexpr::new("demo/ex$*/**").unwrap().get_nonwild_prefix());
/// assert_eq!(
/// None,
/// keyexpr::new("**").unwrap().get_nonwild_prefix());
/// assert_eq!(
/// None,
/// keyexpr::new("dem$*").unwrap().get_nonwild_prefix());
/// ```
#[cfg(feature = "internal")]
#[doc(hidden)]
pub fn get_nonwild_prefix(&self) -> Option<&keyexpr> {
match self.0.find('*') {
Some(i) => match self.0[..i].rfind('/') {
Some(j) => unsafe { Some(keyexpr::from_str_unchecked(&self.0[..j])) },
None => None, // wildcard in the first segment => no invariant prefix
},
None => Some(self), // no wildcard => return self
}
}
/// Remove the specified `prefix` from `self`.
/// The result is a list of `keyexpr`, since there might be several ways for the prefix to match the beginning of the `self` key expression.
/// For instance, if `self` is `"a/**/c/*" and `prefix` is `a/b/c` then:
/// - the `prefix` matches `"a/**/c"` leading to a result of `"*"` when stripped from `self`
/// - the `prefix` matches `"a/**"` leading to a result of `"**/c/*"` when stripped from `self`
///
/// So the result is `["*", "**/c/*"]`.
/// If `prefix` cannot match the beginning of `self`, an empty list is reuturned.
///
/// See below more examples.
///
/// NOTE: this operation can typically used in a backend implementation, within the `zenoh_backend_traits::Storage::on_query()` implementation,
/// to transform the received `Query::selector()`'s `key_expr` into a list of key selectors
/// that will match all the relevant stored keys (that correspond to keys stripped from the prefix).
///
/// # Examples:
/// ```
/// # use core::convert::{TryFrom, TryInto};
/// # use zenoh_keyexpr::keyexpr;
/// assert_eq!(
/// ["abc"],
/// keyexpr::new("demo/example/test/abc").unwrap().strip_prefix(keyexpr::new("demo/example/test").unwrap()).as_slice()
/// );
/// assert_eq!(
/// ["**"],
/// keyexpr::new("demo/example/test/**").unwrap().strip_prefix(keyexpr::new("demo/example/test").unwrap()).as_slice()
/// );
/// assert_eq!(
/// ["**"],
/// keyexpr::new("demo/example/**").unwrap().strip_prefix(keyexpr::new("demo/example/test").unwrap()).as_slice()
/// );
/// assert_eq!(
/// ["**"],
/// keyexpr::new("**").unwrap().strip_prefix(keyexpr::new("demo/example/test").unwrap()).as_slice()
/// );
/// assert_eq!(
/// ["**/xyz"],
/// keyexpr::new("demo/**/xyz").unwrap().strip_prefix(keyexpr::new("demo/example/test").unwrap()).as_slice()
/// );
/// assert_eq!(
/// ["**"],
/// keyexpr::new("demo/**/test/**").unwrap().strip_prefix(keyexpr::new("demo/example/test").unwrap()).as_slice()
/// );
/// assert_eq!(
/// ["xyz", "**/ex$*/*/xyz"],
/// keyexpr::new("demo/**/ex$*/*/xyz").unwrap().strip_prefix(keyexpr::new("demo/example/test").unwrap()).as_slice()
/// );
/// assert_eq!(
/// ["*", "**/test/*"],
/// keyexpr::new("demo/**/test/*").unwrap().strip_prefix(keyexpr::new("demo/example/test").unwrap()).as_slice()
/// );
/// assert!(
/// keyexpr::new("demo/example/test/**").unwrap().strip_prefix(keyexpr::new("not/a/prefix").unwrap()).is_empty()
/// );
/// ```
#[cfg(feature = "internal")]
#[doc(hidden)]
pub fn strip_prefix(&self, prefix: &Self) -> Vec<&keyexpr> {
let mut result = alloc::vec![];
'chunks: for i in (0..=self.len()).rev() {
if if i == self.len() {
self.ends_with("**")
} else {
self.as_bytes()[i] == b'/'
} {
let sub_part = keyexpr::new(&self[..i]).unwrap();
if sub_part.intersects(prefix) {
// if sub_part ends with "**", keep those in remaining part
let remaining = if sub_part.ends_with("**") {
&self[i - 2..]
} else {
&self[i + 1..]
};
let remaining: &keyexpr = if remaining.is_empty() {
continue 'chunks;
} else {
remaining
}
.try_into()
.unwrap();
// if remaining is "**" return only this since it covers all
if remaining.as_bytes() == b"**" {
result.clear();
result.push(unsafe { keyexpr::from_str_unchecked(remaining) });
return result;
}
for i in (0..(result.len())).rev() {
if result[i].includes(remaining) {
continue 'chunks;
}
if remaining.includes(result[i]) {
result.swap_remove(i);
}
}
result.push(remaining);
}
}
}
result
}
pub const fn as_str(&self) -> &str {
&self.0
}
/// # Safety
/// This constructs a [`keyexpr`] without ensuring that it is a valid key-expression.
///
/// Much like [`core::str::from_utf8_unchecked`], this is memory-safe, but calling this without maintaining
/// [`keyexpr`]'s invariants yourself may lead to unexpected behaviors, the Zenoh network dropping your messages.
pub const unsafe fn from_str_unchecked(s: &str) -> &Self {
core::mem::transmute(s)
}
/// # Safety
/// This constructs a [`keyexpr`] without ensuring that it is a valid key-expression.
///
/// Much like [`core::str::from_utf8_unchecked`], this is memory-safe, but calling this without maintaining
/// [`keyexpr`]'s invariants yourself may lead to unexpected behaviors, the Zenoh network dropping your messages.
pub unsafe fn from_slice_unchecked(s: &[u8]) -> &Self {
core::mem::transmute(s)
}
#[cfg(feature = "internal")]
#[doc(hidden)]
pub const fn chunks(&self) -> Chunks {
self.chunks_impl()
}
pub(crate) const fn chunks_impl(&self) -> Chunks {
Chunks {
inner: self.as_str(),
}
}
pub(crate) fn next_delimiter(&self, i: usize) -> Option<usize> {
self.as_str()
.get(i + 1..)
.and_then(|s| s.find('/').map(|j| i + 1 + j))
}
pub(crate) fn previous_delimiter(&self, i: usize) -> Option<usize> {
self.as_str().get(..i).and_then(|s| s.rfind('/'))
}
pub(crate) fn first_byte(&self) -> u8 {
unsafe { *self.as_bytes().get_unchecked(0) }
}
pub(crate) fn iter_splits_ltr(&self) -> SplitsLeftToRight {
SplitsLeftToRight {
inner: self,
index: 0,
}
}
pub(crate) fn iter_splits_rtl(&self) -> SplitsRightToLeft {
SplitsRightToLeft {
inner: self,
index: self.len(),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(crate) struct SplitsLeftToRight<'a> {
inner: &'a keyexpr,
index: usize,
}
impl<'a> SplitsLeftToRight<'a> {
fn right(&self) -> &'a str {
&self.inner[self.index + ((self.index != 0) as usize)..]
}
fn left(&self, followed_by_double: bool) -> &'a str {
&self.inner[..(self.index + ((self.index != 0) as usize + 2) * followed_by_double as usize)]
}
}
impl<'a> Iterator for SplitsLeftToRight<'a> {
type Item = (&'a keyexpr, &'a keyexpr);
fn next(&mut self) -> Option<Self::Item> {
match self.index < self.inner.len() {
false => None,
true => {
let right = self.right();
let double_wild = right.starts_with("**");
let left = self.left(double_wild);
self.index = if left.is_empty() {
self.inner.next_delimiter(0).unwrap_or(self.inner.len())
} else {
self.inner
.next_delimiter(left.len())
.unwrap_or(self.inner.len() + (left.len() == self.inner.len()) as usize)
};
if left.is_empty() {
self.next()
} else {
// SAFETY: because any keyexpr split at `/` becomes 2 valid keyexprs by design, it's safe to assume the constraint is valid once both sides have been validated to not be empty.
(!right.is_empty()).then(|| unsafe {
(
keyexpr::from_str_unchecked(left),
keyexpr::from_str_unchecked(right),
)
})
}
}
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(crate) struct SplitsRightToLeft<'a> {
inner: &'a keyexpr,
index: usize,
}
impl<'a> SplitsRightToLeft<'a> {
fn right(&self, followed_by_double: bool) -> &'a str {
&self.inner[(self.index
- ((self.index != self.inner.len()) as usize + 2) * followed_by_double as usize)..]
}
fn left(&self) -> &'a str {
&self.inner[..(self.index - ((self.index != self.inner.len()) as usize))]
}
}
impl<'a> Iterator for SplitsRightToLeft<'a> {
type Item = (&'a keyexpr, &'a keyexpr);
fn next(&mut self) -> Option<Self::Item> {
match self.index {
0 => None,
_ => {
let left = self.left();
let double_wild = left.ends_with("**");
let right = self.right(double_wild);
self.index = if right.is_empty() {
self.inner
.previous_delimiter(self.inner.len())
.map_or(0, |n| n + 1)
} else {
self.inner
.previous_delimiter(
self.inner.len()
- right.len()
- (self.inner.len() != right.len()) as usize,
)
.map_or(0, |n| n + 1)
};
if right.is_empty() {
self.next()
} else {
// SAFETY: because any keyexpr split at `/` becomes 2 valid keyexprs by design, it's safe to assume the constraint is valid once both sides have been validated to not be empty.
(!left.is_empty()).then(|| unsafe {
(
keyexpr::from_str_unchecked(left),
keyexpr::from_str_unchecked(right),
)
})
}
}
}
}
}
#[test]
fn splits() {
let ke = keyexpr::new("a/**/b/c").unwrap();
let mut splits = ke.iter_splits_ltr();
assert_eq!(
splits.next(),
Some((
keyexpr::new("a/**").unwrap(),
keyexpr::new("**/b/c").unwrap()
))
);
assert_eq!(
splits.next(),
Some((keyexpr::new("a/**/b").unwrap(), keyexpr::new("c").unwrap()))
);
assert_eq!(splits.next(), None);
let mut splits = ke.iter_splits_rtl();
assert_eq!(
splits.next(),
Some((keyexpr::new("a/**/b").unwrap(), keyexpr::new("c").unwrap()))
);
assert_eq!(
splits.next(),
Some((
keyexpr::new("a/**").unwrap(),
keyexpr::new("**/b/c").unwrap()
))
);
assert_eq!(splits.next(), None);
let ke = keyexpr::new("**").unwrap();
let mut splits = ke.iter_splits_ltr();
assert_eq!(
splits.next(),
Some((keyexpr::new("**").unwrap(), keyexpr::new("**").unwrap()))
);
assert_eq!(splits.next(), None);
let ke = keyexpr::new("ab").unwrap();
let mut splits = ke.iter_splits_ltr();
assert_eq!(splits.next(), None);
let ke = keyexpr::new("ab/cd").unwrap();
let mut splits = ke.iter_splits_ltr();
assert_eq!(
splits.next(),
Some((keyexpr::new("ab").unwrap(), keyexpr::new("cd").unwrap()))
);
assert_eq!(splits.next(), None);
for (i, ke) in crate::fuzzer::KeyExprFuzzer(rand::thread_rng())
.take(100)
.enumerate()
{
dbg!(i, &ke);
let splits = ke.iter_splits_ltr().collect::<Vec<_>>();
assert_eq!(splits, {
let mut rtl_rev = ke.iter_splits_rtl().collect::<Vec<_>>();
rtl_rev.reverse();
rtl_rev
});
assert!(!splits
.iter()
.any(|s| s.0.ends_with('/') || s.1.starts_with('/')));
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Chunks<'a> {
inner: &'a str,
}
impl<'a> Chunks<'a> {
/// Convert the remaining part of the iterator to a keyexpr if it is not empty.
pub const fn as_keyexpr(self) -> Option<&'a keyexpr> {
match self.inner.is_empty() {
true => None,
_ => Some(unsafe { keyexpr::from_str_unchecked(self.inner) }),
}
}
/// Peek at the next chunk without consuming it.
pub fn peek(&self) -> Option<&keyexpr> {
if self.inner.is_empty() {
None
} else {
Some(unsafe {
keyexpr::from_str_unchecked(
&self.inner[..self.inner.find('/').unwrap_or(self.inner.len())],
)
})
}
}
/// Peek at the last chunk without consuming it.
pub fn peek_back(&self) -> Option<&keyexpr> {
if self.inner.is_empty() {
None
} else {
Some(unsafe {
keyexpr::from_str_unchecked(
&self.inner[self.inner.rfind('/').map_or(0, |i| i + 1)..],
)
})
}
}
}
impl<'a> Iterator for Chunks<'a> {
type Item = &'a keyexpr;
fn next(&mut self) -> Option<Self::Item> {
if self.inner.is_empty() {
return None;
}
let (next, inner) = self.inner.split_once('/').unwrap_or((self.inner, ""));
self.inner = inner;
Some(unsafe { keyexpr::from_str_unchecked(next) })
}
}
impl<'a> DoubleEndedIterator for Chunks<'a> {
fn next_back(&mut self) -> Option<Self::Item> {
if self.inner.is_empty() {
return None;
}
let (inner, next) = self.inner.rsplit_once('/').unwrap_or(("", self.inner));
self.inner = inner;
Some(unsafe { keyexpr::from_str_unchecked(next) })
}
}
impl Div for &keyexpr {
type Output = OwnedKeyExpr;
fn div(self, rhs: Self) -> Self::Output {
self.join(rhs).unwrap() // Joining 2 key expressions should always result in a canonizable string.
}
}
/// The possible relations between two sets.
///
/// Note that [`Equals`](SetIntersectionLevel::Equals) implies [`Includes`](SetIntersectionLevel::Includes), which itself implies [`Intersects`](SetIntersectionLevel::Intersects).
///
/// You can check for intersection with `level >= SetIntersecionLevel::Intersection` and for inclusion with `level >= SetIntersectionLevel::Includes`.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg(feature = "unstable")]
pub enum SetIntersectionLevel {
Disjoint,
Intersects,
Includes,
Equals,
}
#[test]
fn intersection_level_cmp() {
use SetIntersectionLevel::*;
assert!(Disjoint < Intersects);
assert!(Intersects < Includes);
assert!(Includes < Equals);
}
impl fmt::Debug for keyexpr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "ke`{}`", self.as_ref())
}
}
impl fmt::Display for keyexpr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(self)
}
}
#[repr(i8)]
enum KeyExprConstructionError {
LoneDollarStar = -1,
SingleStarAfterDoubleStar = -2,
DoubleStarAfterDoubleStar = -3,
EmptyChunk = -4,
StarsInChunk = -5,
DollarAfterDollarOrStar = -6,
ContainsSharpOrQMark = -7,
ContainsUnboundDollar = -8,
}
impl<'a> TryFrom<&'a str> for &'a keyexpr {
type Error = ZError;
fn try_from(value: &'a str) -> Result<Self, Self::Error> {
let mut in_big_wild = false;
for chunk in value.split('/') {
if chunk.is_empty() {
bail!((KeyExprConstructionError::EmptyChunk) "Invalid Key Expr `{}`: empty chunks are forbidden, as well as leading and trailing slashes", value)
}
if chunk == "$*" {
bail!((KeyExprConstructionError::LoneDollarStar)
"Invalid Key Expr `{}`: lone `$*`s must be replaced by `*` to reach canon-form",
value
)
}
if in_big_wild {
match chunk {
"**" => bail!((KeyExprConstructionError::DoubleStarAfterDoubleStar)
"Invalid Key Expr `{}`: `**/**` must be replaced by `**` to reach canon-form",
value
),
"*" => bail!((KeyExprConstructionError::SingleStarAfterDoubleStar)
"Invalid Key Expr `{}`: `**/*` must be replaced by `*/**` to reach canon-form",
value
),
_ => {}
}
}
if chunk == "**" {
in_big_wild = true;
} else {
in_big_wild = false;
if chunk != "*" {
let mut split = chunk.split('*');
split.next_back();
if split.any(|s| !s.ends_with('$')) {
bail!((KeyExprConstructionError::StarsInChunk)
"Invalid Key Expr `{}`: `*` and `**` may only be preceded an followed by `/`",
value
)
}
}
}
}
for (index, forbidden) in value.bytes().enumerate().filter_map(|(i, c)| {
if FORBIDDEN_CHARS.contains(&c) {
Some((i, c))
} else {
None
}
}) {
let bytes = value.as_bytes();
if forbidden == b'$' {
if let Some(b'*') = bytes.get(index + 1) {
if let Some(b'$') = bytes.get(index + 2) {
bail!((KeyExprConstructionError::DollarAfterDollarOrStar)
"Invalid Key Expr `{}`: `$` is not allowed after `$*`",
value
)
}
} else {
bail!((KeyExprConstructionError::ContainsUnboundDollar)"Invalid Key Expr `{}`: `$` is only allowed in `$*`", value)
}
} else {
bail!((KeyExprConstructionError::ContainsSharpOrQMark)
"Invalid Key Expr `{}`: `#` and `?` are forbidden characters",
value
)
}
}
Ok(unsafe { keyexpr::from_str_unchecked(value) })
}
}
impl<'a> TryFrom<&'a mut str> for &'a keyexpr {
type Error = ZError;
fn try_from(value: &'a mut str) -> Result<Self, Self::Error> {
(value as &'a str).try_into()
}
}
impl<'a> TryFrom<&'a mut String> for &'a keyexpr {
type Error = ZError;
fn try_from(value: &'a mut String) -> Result<Self, Self::Error> {
(value.as_str()).try_into()
}
}
impl<'a> TryFrom<&'a String> for &'a keyexpr {
type Error = ZError;
fn try_from(value: &'a String) -> Result<Self, Self::Error> {
(value.as_str()).try_into()
}
}
impl<'a> TryFrom<&'a &'a str> for &'a keyexpr {
type Error = ZError;
fn try_from(value: &'a &'a str) -> Result<Self, Self::Error> {
(*value).try_into()
}
}
impl<'a> TryFrom<&'a &'a mut str> for &'a keyexpr {
type Error = ZError;
fn try_from(value: &'a &'a mut str) -> Result<Self, Self::Error> {
keyexpr::new(*value)
}
}
#[test]
fn autocanon() {
let mut s: Box<str> = Box::from("hello/**/*");
let mut s: &mut str = &mut s;
assert_eq!(keyexpr::autocanonize(&mut s).unwrap(), "hello/*/**");
}
impl Deref for keyexpr {
type Target = str;
fn deref(&self) -> &Self::Target {
unsafe { core::mem::transmute(self) }
}
}
impl AsRef<str> for keyexpr {
fn as_ref(&self) -> &str {
self
}
}
impl PartialEq<str> for keyexpr {
fn eq(&self, other: &str) -> bool {
self.as_str() == other
}
}
impl PartialEq<keyexpr> for str {
fn eq(&self, other: &keyexpr) -> bool {
self == other.as_str()
}
}
impl Borrow<keyexpr> for OwnedKeyExpr {
fn borrow(&self) -> &keyexpr {
self
}
}
impl ToOwned for keyexpr {
type Owned = OwnedKeyExpr;
fn to_owned(&self) -> Self::Owned {
OwnedKeyExpr::from(self)
}
}
#[test]
fn test_keyexpr_strip_prefix() {
let expectations = [
(("demo/example/test/**", "demo/example/test"), &["**"][..]),
(("demo/example/**", "demo/example/test"), &["**"]),
(("**", "demo/example/test"), &["**"]),
(
("demo/example/test/**/x$*/**", "demo/example/test"),
&["**/x$*/**"],
),
(("demo/**/xyz", "demo/example/test"), &["**/xyz"]),
(("demo/**/test/**", "demo/example/test"), &["**"]),
(
("demo/**/ex$*/*/xyz", "demo/example/test"),
["xyz", "**/ex$*/*/xyz"].as_ref(),
),
(
("demo/**/ex$*/t$*/xyz", "demo/example/test"),
["xyz", "**/ex$*/t$*/xyz"].as_ref(),
),
(
("demo/**/te$*/*/xyz", "demo/example/test"),
["*/xyz", "**/te$*/*/xyz"].as_ref(),
),
(("demo/example/test", "demo/example/test"), [].as_ref()),
]
.map(|((a, b), expected)| {
(
(keyexpr::new(a).unwrap(), keyexpr::new(b).unwrap()),
expected
.iter()
.map(|s| keyexpr::new(*s).unwrap())
.collect::<Vec<_>>(),
)
});
for ((ke, prefix), expected) in expectations {
dbg!(ke, prefix);
assert_eq!(ke.strip_prefix(prefix), expected)
}
}