1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
//
// Copyright (c) 2021 - 2024 ZettaScale Technology
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License 2.0 which is available at
// http://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
//
// Contributors:
// ZettaScale Zenoh Team, <zenoh@zettascale.tech>
//
use crate::traits::SendSyncAny;
use anyhow::{bail, Context};
use serde::{Deserialize, Serialize};
use std::cmp::Ordering;
use std::fmt::Debug;
use std::ops::Deref;
use std::sync::Arc;
use uhlc::Timestamp;
use zenoh_flow_commons::Result;
/// `SerializerFn` is a type-erased version of the serialiser function provided by node developer.
///
/// It is passed to downstream nodes (residing on the same process) in case they need to serialise
/// the data they receive typed.
/// Passing around the function allows us to serialise only when needed and without requiring prior
/// knowledge.
pub(crate) type SerializerFn =
dyn Fn(&mut Vec<u8>, Arc<dyn SendSyncAny>) -> Result<()> + Send + Sync;
/// This function is what Zenoh-Flow will use to deserialise the data received on the `Input`.
///
/// It will be called for instance when data is received serialised (i.e. from an upstream node that
/// is either not implemented in Rust or on a different process) before it is given to the user's
/// code.
pub(crate) type DeserializerFn<T> = dyn Fn(&[u8]) -> Result<T> + Send + Sync;
/// A `Payload` is Zenoh-Flow's lowest message container.
///
/// It either contains serialised data, i.e. `Bytes` (if received from the network, or from nodes
/// not written in Rust), or `Typed` data as a tuple `(`[Any](`std::any::Any`)`, SerializerFn)`.
#[derive(Clone, Serialize, Deserialize)]
pub enum Payload {
/// Serialised data, coming either from Zenoh of from non-Rust node.
Bytes(Arc<Vec<u8>>),
#[serde(skip_serializing, skip_deserializing)]
/// Data coming from another Rust node located on the same Zenoh-Flow runtime that can either be downcast or
/// serialised.
Typed((Arc<dyn SendSyncAny>, Arc<SerializerFn>)),
}
impl Debug for Payload {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Payload::Bytes(_) => write!(f, "Payload::Bytes"),
Payload::Typed(_) => write!(f, "Payload::Typed"),
}
}
}
impl Payload {
pub fn from_data<T: Send + Sync + 'static>(
data: Data<T>,
serializer: Arc<SerializerFn>,
) -> Self {
match data.inner {
DataInner::Payload { payload, data: _ } => payload,
DataInner::Data(data) => {
Self::Typed((Arc::new(data) as Arc<dyn SendSyncAny>, serializer))
}
}
}
/// Populate `buffer` with the bytes representation of the [Payload].
///
/// # Performance
///
/// This method will serialise the [Payload] if it is `Typed`. Otherwise, the bytes
/// representation is simply cloned.
///
/// The provided `buffer` is reused and cleared between calls, so once its capacity stabilises
/// no more allocation is performed.
pub fn try_as_bytes_into(&self, buffer: &mut Vec<u8>) -> Result<()> {
buffer.clear(); // remove previous data but keep the allocated capacity
match self {
Payload::Bytes(bytes) => {
(**bytes).clone_into(buffer);
Ok(())
}
Payload::Typed((typed_data, serializer)) => {
(serializer)(buffer, Arc::clone(typed_data))
}
}
}
/// Return an [Arc] containing the bytes representation of the [Payload].
///
/// # Performance
///
/// This method will only serialise (and thus allocate) the [Payload] if it is typed. Otherwise
/// the [Arc] is cloned.
//
// NOTE: This method is used by, at least, our Python API.
pub fn try_as_bytes(&self) -> Result<Arc<Vec<u8>>> {
match self {
Payload::Bytes(bytes) => Ok(bytes.clone()),
Payload::Typed((typed_data, serializer)) => {
let mut buffer = Vec::default();
(serializer)(&mut buffer, Arc::clone(typed_data))?;
Ok(Arc::new(buffer))
}
}
}
}
/// Creates a new `Data` from a `Vec<u8>`.
///
/// In order to avoid copies it puts the data inside an `Arc`.
impl From<Vec<u8>> for Payload {
fn from(bytes: Vec<u8>) -> Self {
Self::Bytes(Arc::new(bytes))
}
}
/// Creates a new `Data` from a `&[u8]`.
impl From<&[u8]> for Payload {
fn from(bytes: &[u8]) -> Self {
Self::Bytes(Arc::new(bytes.to_vec()))
}
}
impl From<LinkMessage> for Payload {
fn from(data_message: LinkMessage) -> Self {
data_message.payload
}
}
/// A message send on a Zenoh-Flow link: a [Payload] and a [Timestamp].
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct LinkMessage {
pub(crate) payload: Payload,
pub(crate) timestamp: Timestamp,
}
impl Ord for LinkMessage {
fn cmp(&self, other: &Self) -> Ordering {
self.get_timestamp().cmp(other.get_timestamp())
}
}
impl PartialOrd for LinkMessage {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl PartialEq for LinkMessage {
fn eq(&self, other: &Self) -> bool {
self.get_timestamp() == other.get_timestamp()
}
}
impl Eq for LinkMessage {}
impl Deref for LinkMessage {
type Target = Payload;
fn deref(&self) -> &Self::Target {
&self.payload
}
}
impl LinkMessage {
pub fn new(payload: Payload, timestamp: Timestamp) -> Self {
Self { payload, timestamp }
}
/// Creates a new message from serialised data.
///
/// This is used when the message is coming from Zenoh or from a non-rust node.
pub fn new_serialized(data: Vec<u8>, timestamp: Timestamp) -> Self {
Self {
payload: Payload::Bytes(Arc::new(data)),
timestamp,
}
}
/// Return the [Timestamp] associated with this message.
//
// NOTE: This method is used by, at least, our Python API.
pub fn get_timestamp(&self) -> &Timestamp {
&self.timestamp
}
/// Serialises the [LinkMessage] using [bincode] into the given `buffer`.
///
/// The `inner_buffer` is used to serialise (if need be) the [Payload] contained inside the
/// [LinkMessage].
///
/// # Performance
///
/// The provided `buffer` and `inner_buffer` are reused and cleared between calls, so once their
/// capacity stabilises no (re)allocation is performed.
///
/// # Errors
///
/// An error variant is returned in case of:
/// - fails to serialise
pub fn serialize_bincode_into(
&self,
message_buffer: &mut Vec<u8>,
payload_buffer: &mut Vec<u8>,
) -> Result<()> {
payload_buffer.clear(); // empty the buffers but keep their allocated capacity
message_buffer.clear();
match &self.payload {
Payload::Bytes(_) => bincode::serialize_into(message_buffer, &self)
.context("Failed to serialise `Payload::Bytes``"),
Payload::Typed((data, serializer)) => {
(serializer)(payload_buffer, Arc::clone(data))?;
let serialized_message = Self {
payload: Payload::Bytes(Arc::new(payload_buffer.clone())),
timestamp: self.timestamp,
};
bincode::serialize_into(message_buffer, &serialized_message)
.context("Failed to serialise `Payload::Typed`")
}
}
}
}
/// A `Data<T>` is a wrapper around `T` given by a typed [`Input<T>`](crate::prelude::Input).
///
/// A `Data<T>` automatically dereferences to a `&T`.
///
/// # Performance
///
/// If the upstream node does not reside on the same Zenoh-Flow runtime, dereferencing to `&T` incurs some additional
/// operations: the received [Payload] will then necessarily be serialised and must first be deserialised.
///
/// To perform the deserialisation, the [deserialiser](crate::io::InputBuilder::typed()) function passed to the
/// [`Input<T>`](crate::prelude::Input) will be called.
#[derive(Debug)]
pub struct Data<T> {
inner: DataInner<T>,
}
/// The `DataInner` enum represents the two ways to send data in an [`Output<T>`](`Output`).
///
/// The `Payload` variant corresponds to a previously generated `Data<T>` being sent.
/// The `Data` variant corresponds to a new instance of `T` being sent.
pub(crate) enum DataInner<T> {
Payload { payload: Payload, data: Option<T> },
Data(T),
}
impl<T> Debug for DataInner<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
DataInner::Payload { payload, data } => {
let data = if data.is_some() { "Some" } else { "None" };
write!(f, "DataInner::Payload: {:?} - data: {}", payload, data)
}
DataInner::Data(_) => write!(f, "DataInner::Data(T)"),
}
}
}
// Implementing `From<T>` allows us to accept instances of `T` in the signature of `send` and
// `try_send` methods as `T` will implement `impl Into<Data<T>>`.
impl<T: Send + Sync + 'static> From<T> for Data<T> {
fn from(value: T) -> Self {
Self {
inner: DataInner::Data(value),
}
}
}
// The implementation of `Deref` is what allows users to transparently manipulate the type `T`.
//
// ## SAFETY
//
// Despite the presence of `expect` and `panic!`, we should never end up in these situations in normal circumstances.
//
// Let us reason here as to why this is "safe".
//
// The call to `expect` happens when the inner data is a [Typed](Payload::Typed) payload and the downcast to `T`
// fails. This should not happen because of the way a [Data] is created: upon creation we first perform a check that the
// provided typed payload can actually be downcast to `T` — see the method `Data::try_from_payload`.
//
// The call to `panic!` happens when the inner data is a [Bytes](Payload::Bytes) payload and the `data` field is
// `None`. Again, this should not happen because of the way a [`Data`](`Data`) is created: upon creation, if the data is
// received as bytes, we first deserialise it and set the `data` field to `Some(T)` — see the method
// `Data::try_from_payload`.
impl<T: 'static> Deref for Data<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
match &self.inner {
DataInner::Payload { payload, data } => {
if let Some(data) = data {
data
} else if let Payload::Typed((typed, _)) = payload {
(**typed).as_any().downcast_ref::<T>().expect(
r#"You probably managed to find a very nasty flaw in Zenoh-Flow’s code as we
believed this situation would never happen (unless explicitly triggered — "explicitly" being an
understatement here, we feel it’s more like you really, really, wanted to see that message — in
which case, congratulations!).
Our guess as to what happened is that:
- the data in `Payload::Typed` was, at first, correct (where we internally do the
`as_any().is::<T>()` check),
- in between this check and the call to `deref` the underlying data somehow changed.
If we did not do a mistake — fortunately the most likely scenario — then we do not know what
happened and we would be eager to investigate.
Feel free to contact us at < zenoh@zettascale.tech >.
"#,
)
} else {
panic!(
r#"You probably managed to find a very nasty flaw in Zenoh-Flow's code as we
believed this situation would never happen (unless explicitly triggered — "explicitly" being an
understatement here, we feel it's more like you really, really, wanted to see that message — in
which case, congratulations!).
Our guess as to what happened is that:
- the `data` field is a `Payload::Bytes`,
- the `typed` field is set to `None`.
If we did not do a mistake — fortunately the most likely scenario — then we do not know what
happened and we would be eager to investigate.
Feel free to contact us at < zenoh@zettascale.tech >.
"#
)
}
}
DataInner::Data(data) => data,
}
}
}
impl<T: 'static> Data<T> {
/// Try to create a new [`Data<T>`](`Data`) based on a [`Payload`](`Payload`).
///
/// Depending on the variant of [`Payload`](`Payload`) different steps are performed:
/// - if `Payload::Bytes` then Zenoh-Flow tries to deserialise to an instance of `T` (performing
/// an allocation),
/// - if `Payload::Typed` then Zenoh-Flow checks that the underlying type matches `T` (relying
/// on [`Any`](`Any`)).
///
/// ## Errors
///
/// An error will be returned if the Payload does not match `T`, i.e. if the deserialisation or
/// the downcast failed.
pub(crate) fn try_from_payload(
payload: Payload,
deserializer: Arc<DeserializerFn<T>>,
) -> Result<Self> {
let mut typed = None;
match payload {
Payload::Bytes(ref bytes) => typed = Some((deserializer)(bytes.as_slice())?),
Payload::Typed((ref typed, _)) => {
if !(**typed).as_any().is::<T>() {
bail!("Failed to downcast provided value")
}
}
}
Ok(Self {
inner: DataInner::Payload {
payload,
data: typed,
},
})
}
}