1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
//
// Copyright (c) 2022 ZettaScale Technology
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License 2.0 which is available at
// http://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
//
// Contributors:
//   ZettaScale Zenoh Team, <zenoh@zettascale.tech>
//
#[cfg(feature = "shared-memory")]
use super::shm::{SharedMemoryBuf, SharedMemoryReader};
use super::ZSlice;
#[cfg(feature = "shared-memory")]
use super::ZSliceBuffer;
use crate::reader::Reader;
use crate::SplitBuffer;
use std::fmt;
use std::io;
use std::io::IoSlice;
use std::num::NonZeroUsize;
#[cfg(feature = "shared-memory")]
use std::sync::{Arc, RwLock};
#[cfg(feature = "shared-memory")]
use zenoh_core::Result as ZResult;

/*************************************/
/*           ZBUF POSITION           */
/*************************************/
#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
pub struct ZBufPos {
    slice: usize, // The ZSlice index
    byte: usize,  // The byte in the ZSlice
    read: usize,  // The amount read so far in the ZBuf
}

/*************************************/
/*            ZBUF INNER             */
/*************************************/
#[derive(Clone)]
enum ZBufInner {
    Single(ZSlice),
    Multiple(Vec<ZSlice>),
    Empty,
}

impl Default for ZBufInner {
    fn default() -> ZBufInner {
        ZBufInner::Empty
    }
}

/*************************************/
/*              ZBUF                 */
/*************************************/
/// A zenoh buffer.
///
/// [`ZBuf`][ZBuf] is a buffer that contains one or more [`ZSlice`][ZSlice]s. It is used
/// to efficiently send and receive data in zenoh. It provides transparent usage for
/// both network and shared memory operations through a simple API.
///
/// By storing a set of [`ZSlice`][ZSlice], it is possible to compose the target payload
/// starting from a set of non-contiguous memory regions. This provides a twofold benefit:
/// (1) the user can compose the payload in an incremental manner without requiring reallocations
/// and (2) the payload is received and recomposed as it arrives from the network without reallocating
/// any receiving buffer.
///
/// Example for creating a data buffer:
/// ```
/// use zenoh_buffers::{ZBuf, ZSlice, traits::SplitBuffer, traits::buffer::InsertBuffer};
///
/// // Create a ZBuf containing a newly allocated vector of bytes.
/// let zbuf: ZBuf = vec![0_u8; 16].into();
/// assert_eq!(&vec![0_u8; 16], zbuf.contiguous().as_ref());
///
/// // Create a ZBuf containing twice a newly allocated vector of bytes.
/// // Allocate first a vectore of bytes and convert it into a ZSlice.
/// let zslice: ZSlice = vec![0_u8; 16].into();
///
/// let mut zbuf = ZBuf::default();
/// zbuf.append(zslice.clone()).unwrap(); // Cloning a ZSlice does not allocate
/// zbuf.append(zslice).unwrap();
///
/// assert_eq!(&vec![0_u8; 32], zbuf.contiguous().as_ref());
/// ```
///
/// Calling [`contiguous()`][ZBuf::contiguous] allows to acces to the whole payload as a contiguous `&[u8]` via the
/// [`ZSlice`][ZSlice] type. However, this operation has a drawback when the original message was large
/// enough to cause network fragmentation. Because of that, the actual message payload may have
/// been received in multiple fragments (i.e. [`ZSlice`][ZSlice]) which are non-contiguous in memory.
///
/// ```
/// use zenoh_buffers::{ZBuf, ZSlice, traits::SplitBuffer, traits::buffer::InsertBuffer};
///
/// // Create a ZBuf containing twice a newly allocated vector of bytes.
/// let zslice: ZSlice = vec![0_u8; 16].into();
/// let mut zbuf = ZBuf::default();
/// zbuf.append(zslice.clone());
///
/// // contiguous() does not allocate since zbuf contains only one slice
/// assert_eq!(&vec![0_u8; 16], zbuf.contiguous().as_ref());
///
/// // Add a second slice to zbuf
/// zbuf.append(zslice.clone());
///
/// // contiguous() allocates since zbuf contains two slices
/// assert_eq!(&vec![0_u8; 32], zbuf.contiguous().as_ref());
/// ```
///
/// [`zslices_num()`][ZBuf::zslices_num] returns the number of [`ZSlice`][ZSlice]s the [`ZBuf`][ZBuf] is composed of. If
/// the returned value is greater than 1, then [`contiguous()`][ZBuf::contiguous] will allocate. In order to retrieve the
/// content of the [`ZBuf`][ZBuf] without allocating, it is possible to loop over its [`ZSlice`][ZSlice]s.
#[derive(Clone, Default)]
pub struct ZBuf {
    slices: ZBufInner,
    len: usize,
    #[cfg(feature = "shared-memory")]
    has_shminfo: bool,
    #[cfg(feature = "shared-memory")]
    has_shmbuf: bool,
}

#[derive(Debug, Clone)]
pub struct ZBufReader<'a> {
    inner: &'a ZBuf,
    read: usize,
    slice: usize,
    byte: usize,
}

impl std::ops::Deref for ZBufReader<'_> {
    type Target = ZBuf;
    fn deref(&self) -> &Self::Target {
        self.inner
    }
}

impl ZBuf {
    fn with_slice_capacity(n: usize) -> ZBuf {
        ZBuf {
            slices: match n {
                0 | 1 => ZBufInner::Empty,
                _ => ZBufInner::Multiple(Vec::with_capacity(n)),
            },
            len: 0,
            #[cfg(feature = "shared-memory")]
            has_shminfo: false,
            #[cfg(feature = "shared-memory")]
            has_shmbuf: false,
        }
    }

    #[inline]
    fn add_zslice(&mut self, slice: ZSlice) {
        #[cfg(feature = "shared-memory")]
        match &slice.buf {
            ZSliceBuffer::ShmInfo(_) => self.has_shminfo = true,
            ZSliceBuffer::ShmBuffer(_) => self.has_shmbuf = true,
            _ => {}
        }

        self.len += slice.len();
        match &mut self.slices {
            ZBufInner::Single(s) => {
                let m = vec![s.clone(), slice];
                self.slices = ZBufInner::Multiple(m);
            }
            ZBufInner::Multiple(m) => {
                m.push(slice);
            }
            ZBufInner::Empty => {
                self.slices = ZBufInner::Single(slice);
            }
        }
    }

    #[inline(always)]
    pub fn get_zslice(&self, index: usize) -> Option<&ZSlice> {
        match &self.slices {
            ZBufInner::Single(s) => match index {
                0 => Some(s),
                _ => None,
            },
            ZBufInner::Multiple(m) => m.get(index),
            ZBufInner::Empty => None,
        }
    }

    #[inline(always)]
    pub fn zslices_num(&self) -> usize {
        match &self.slices {
            ZBufInner::Single(_) => 1,
            ZBufInner::Multiple(m) => m.len(),
            ZBufInner::Empty => 0,
        }
    }

    #[inline(always)]
    pub fn clear(&mut self) {
        self.len = 0;
        self.slices = ZBufInner::Empty;
    }

    // same than read_bytes() but not moving read position (allow non-mutable self)
    fn copy_bytes(&self, bs: &mut [u8], mut pos: (usize, usize)) -> usize {
        let len = bs.len();

        let mut written = 0;
        while written < len {
            if let Some(slice) = self.get_zslice(pos.0) {
                let remaining = slice.len() - pos.1;
                let to_read = remaining.min(bs.len() - written);
                bs[written..written + to_read]
                    .copy_from_slice(&slice.as_slice()[pos.1..pos.1 + to_read]);
                written += to_read;
                pos = (pos.0 + 1, 0);
            } else {
                return written;
            }
        }
        written
    }

    #[cfg(feature = "shared-memory")]
    #[inline(always)]
    pub fn has_shminfo(&self) -> bool {
        self.has_shminfo
    }

    #[cfg(feature = "shared-memory")]
    #[inline(always)]
    pub fn has_shmbuf(&self) -> bool {
        self.has_shmbuf
    }

    #[cfg(feature = "shared-memory")]
    #[inline(never)]
    pub fn map_to_shmbuf(&mut self, shmr: Arc<RwLock<SharedMemoryReader>>) -> ZResult<bool> {
        if !self.has_shminfo() {
            return Ok(false);
        }

        let mut new_len = 0;

        let mut res = false;
        match &mut self.slices {
            ZBufInner::Single(s) => {
                res = s.map_to_shmbuf(shmr)?;
                new_len += s.len();
            }
            ZBufInner::Multiple(m) => {
                for s in m.iter_mut() {
                    res = res || s.map_to_shmbuf(shmr.clone())?;
                    new_len += s.len();
                }
            }
            ZBufInner::Empty => {}
        }
        self.len = new_len;
        self.has_shminfo = false;
        self.has_shmbuf = true;

        Ok(res)
    }

    #[cfg(feature = "shared-memory")]
    #[inline(never)]
    pub fn map_to_shminfo(&mut self) -> ZResult<bool> {
        if !self.has_shmbuf() {
            return Ok(false);
        }

        let mut new_len = 0;

        let mut res = false;
        match &mut self.slices {
            ZBufInner::Single(s) => {
                res = s.map_to_shminfo()?;
                new_len = s.len();
            }
            ZBufInner::Multiple(m) => {
                for s in m.iter_mut() {
                    res = res || s.map_to_shminfo()?;
                    new_len += s.len();
                }
            }
            ZBufInner::Empty => {}
        }
        self.has_shminfo = true;
        self.has_shmbuf = false;
        self.len = new_len;

        Ok(res)
    }
}

impl fmt::Display for ZBuf {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ZBuf{{ content: ",)?;
        match &self.slices {
            ZBufInner::Single(s) => write!(f, "{}", hex::encode_upper(s.as_slice()))?,
            ZBufInner::Multiple(m) => {
                for s in m.iter() {
                    write!(f, "{}", hex::encode_upper(s.as_slice()))?;
                }
            }
            ZBufInner::Empty => {}
        }
        write!(f, " }}")
    }
}

impl fmt::Debug for ZBuf {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        macro_rules! zsliceprint {
            ($slice:expr) => {
                #[cfg(feature = "shared-memory")]
                {
                    match $slice.buf {
                        ZSliceBuffer::NetSharedBuffer(_) => write!(f, " BUF:")?,
                        ZSliceBuffer::NetOwnedBuffer(_) => write!(f, " BUF:")?,
                        ZSliceBuffer::ShmBuffer(_) => write!(f, " SHM_BUF:")?,
                        ZSliceBuffer::ShmInfo(_) => write!(f, " SHM_INFO:")?,
                    }
                }
                #[cfg(not(feature = "shared-memory"))]
                {
                    write!(f, " BUF:")?;
                }
            };
        }

        write!(f, "ZBuf{{ ")?;
        write!(f, "slices: [")?;
        match &self.slices {
            ZBufInner::Single(s) => {
                zsliceprint!(s);
                write!(f, "{}", hex::encode_upper(s.as_slice()))?;
            }
            ZBufInner::Multiple(m) => {
                for s in m.iter() {
                    zsliceprint!(s);
                    write!(f, " {},", hex::encode_upper(s.as_slice()))?;
                }
            }
            ZBufInner::Empty => {
                write!(f, " None")?;
            }
        }
        write!(f, " ] }}")
    }
}

impl<'a> ZBufReader<'a> {
    #[inline(always)]
    pub fn reset(&mut self) {
        self.read = 0;
        self.slice = 0;
        self.byte = 0;
    }
    // Read 'len' bytes from 'self' and add those to 'dest'
    // This is 0-copy, only ZSlices from 'self' are added to 'dest', without cloning the original buffer.
    pub fn read_into_zbuf(&mut self, dest: &mut ZBuf, len: usize) -> bool {
        if self.remaining() < len {
            return false;
        }
        let mut n = len;
        while n > 0 {
            let pos_1 = self.byte;
            let current = self.curr_slice().unwrap();
            let slice_len = current.len();
            let remain_in_slice = slice_len - pos_1;
            let l = n.min(remain_in_slice);
            let zs = match current.new_sub_slice(pos_1, pos_1 + l) {
                Some(zs) => zs,
                None => return false,
            };
            dest.add_zslice(zs);
            self.skip_bytes_no_check(l);
            n -= l;
        }
        true
    }
    // // Read all the bytes from 'self' and add those to 'dest'
    // #[inline(always)]
    // pub(crate) fn drain_into_zbuf(&mut self, dest: &mut ZBuf) -> bool {
    //     self.read_into_zbuf(dest, self.readable())
    // }
    // Read a subslice of current slice
    pub fn read_zslice(&mut self, len: usize) -> Option<ZSlice> {
        let slice = self.curr_slice()?;
        if len <= slice.len() {
            let slice = slice.new_sub_slice(self.byte, self.byte + len)?;
            self.skip_bytes_no_check(len);
            Some(slice)
        } else {
            None
        }
    }
    #[inline(always)]
    fn curr_slice(&self) -> Option<&ZSlice> {
        self.inner.get_zslice(self.slice)
    }
    // #[inline(always)]
    // fn curr_slice_mut(&mut self) -> Option<&mut ZSlice> {
    //     self.inner.get_zslice_mut(self.slice)
    // }
    fn skip_bytes_no_check(&mut self, mut n: usize) {
        while n > 0 {
            let current = self.curr_slice().unwrap();
            let len = current.len();
            if self.byte + n < len {
                self.read += n;
                self.byte += n;
                return;
            } else {
                let read = len - self.byte;
                self.slice += 1;
                self.read += len - self.byte;
                self.byte = 0;
                n -= read;
            }
        }
    }

    pub fn get_pos(&self) -> ZBufPos {
        ZBufPos {
            slice: self.slice,
            byte: self.byte,
            read: self.read,
        }
    }
    pub fn set_pos(&mut self, pos: ZBufPos) {
        assert!(
            pos.read <= self.inner.len,
            "ZBufReader expected to go to {}, but underlying buffer only has {} bytes",
            pos.read,
            self.inner.len
        );
        self.slice = pos.slice;
        self.byte = pos.byte;
        self.read = pos.read;
    }
}

// impl Iterator for ZBuf {
//     type Item = ZSlice;

//     fn next(&mut self) -> Option<Self::Item> {
//         let mut slice = self.curr_slice()?.clone();
//         if self.pos.byte > 0 {
//             slice = slice.new_sub_slice(self.pos.byte, slice.len())?;
//             self.pos.byte = 0;
//         }
//         self.pos.slice += 1;
//         self.pos.read += slice.len();

//         Some(slice)
//     }

//     fn size_hint(&self) -> (usize, Option<usize>) {
//         match &self.slices {
//             ZBufInner::Single(_) => (1, Some(1)),
//             ZBufInner::Multiple(m) => {
//                 let remaining = m.len() - self.pos.slice;
//                 (remaining, Some(remaining))
//             }
//             ZBufInner::Empty => (0, Some(0)),
//         }
//     }
// }

/*************************************/
/*            ZBUF READ              */
/*************************************/
impl<'a> io::Read for ZBufReader<'a> {
    #[inline]
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        Ok(crate::reader::Reader::read(self, buf))
    }

    #[inline]
    fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
        if crate::reader::Reader::read_exact(self, buf) {
            Ok(())
        } else {
            Err(io::Error::new(
                io::ErrorKind::UnexpectedEof,
                "failed to fill whole buffer",
            ))
        }
    }
}

/*************************************/
/*            ZBUF FROM              */
/*************************************/
impl From<ZSlice> for ZBuf {
    fn from(slice: ZSlice) -> ZBuf {
        let mut zbuf = ZBuf::with_slice_capacity(1);
        zbuf.add_zslice(slice);
        zbuf
    }
}

impl From<Vec<u8>> for ZBuf {
    fn from(buf: Vec<u8>) -> ZBuf {
        ZBuf::from(ZSlice::from(buf))
    }
}

impl From<Vec<ZSlice>> for ZBuf {
    fn from(mut slices: Vec<ZSlice>) -> ZBuf {
        let mut zbuf = ZBuf::with_slice_capacity(slices.len());
        for slice in slices.drain(..) {
            zbuf.add_zslice(slice);
        }
        zbuf
    }
}

impl<'a> From<Vec<IoSlice<'a>>> for ZBuf {
    fn from(slices: Vec<IoSlice>) -> ZBuf {
        let v: Vec<ZSlice> = slices.iter().map(ZSlice::from).collect();
        ZBuf::from(v)
    }
}

impl From<super::WBuf> for ZBuf {
    fn from(wbuf: super::WBuf) -> ZBuf {
        ZBuf::from(wbuf.to_zslices())
    }
}

impl PartialEq for ZBuf {
    fn eq(&self, other: &Self) -> bool {
        let mut self_slices = self.slices();
        let mut other_slices = other.slices();
        let mut current_self = self_slices.next();
        let mut current_other = other_slices.next();
        loop {
            match (current_self, current_other) {
                (None, None) => return true,
                (None, _) | (_, None) => return false,
                (Some(l), Some(r)) => {
                    let cmp_len = l.len().min(r.len());
                    if l[..cmp_len] != r[..cmp_len] {
                        return false;
                    }
                    if cmp_len == l.len() {
                        current_self = self_slices.next()
                    } else {
                        current_self = Some(&l[cmp_len..])
                    }
                    if cmp_len == r.len() {
                        current_other = other_slices.next()
                    } else {
                        current_other = Some(&r[cmp_len..])
                    }
                }
            }
        }
    }
}

#[cfg(feature = "shared-memory")]
impl From<Arc<SharedMemoryBuf>> for ZBuf {
    fn from(smb: Arc<SharedMemoryBuf>) -> ZBuf {
        let mut zbuf = ZBuf::with_slice_capacity(1);
        zbuf.add_zslice(smb.into());
        zbuf
    }
}

#[cfg(feature = "shared-memory")]
impl From<Box<SharedMemoryBuf>> for ZBuf {
    fn from(smb: Box<SharedMemoryBuf>) -> ZBuf {
        let mut zbuf = ZBuf::with_slice_capacity(1);
        zbuf.add_zslice(smb.into());
        zbuf
    }
}

#[cfg(feature = "shared-memory")]
impl From<SharedMemoryBuf> for ZBuf {
    fn from(smb: SharedMemoryBuf) -> ZBuf {
        let mut zbuf = ZBuf::with_slice_capacity(1);
        zbuf.add_zslice(smb.into());
        zbuf
    }
}

type ZSliceIter<'a> = std::slice::Iter<'a, ZSlice>;
impl<'a> crate::traits::SplitBuffer<'a> for ZBuf {
    type Slices = std::iter::Map<ZSliceIter<'a>, fn(&'a ZSlice) -> &'a [u8]>;
    fn slices(&'a self) -> Self::Slices {
        match &self.slices {
            ZBufInner::Single(s) => std::slice::from_ref(s),
            ZBufInner::Multiple(s) => s.as_slice(),
            ZBufInner::Empty => &[],
        }
        .iter()
        .map(ZSlice::as_slice)
    }
    #[inline(always)]
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
    #[inline(always)]
    fn len(&self) -> usize {
        self.len
    }
}
impl<'a> crate::traits::reader::Reader for ZBufReader<'a> {
    fn read(&mut self, into: &mut [u8]) -> usize {
        let read = self.inner.copy_bytes(into, (self.slice, self.byte));
        self.skip_bytes_no_check(read);
        read
    }
    fn read_exact(&mut self, into: &mut [u8]) -> bool {
        if self.inner.copy_bytes(into, (self.slice, self.byte)) < into.len() {
            return false;
        }
        self.skip_bytes_no_check(into.len());
        true
    }
    fn read_byte(&mut self) -> Option<u8> {
        if let Some(current) = self.curr_slice() {
            let byte = current[self.byte];
            self.skip_bytes_no_check(1);
            Some(byte)
        } else {
            None
        }
    }
    fn remaining(&self) -> usize {
        self.inner.len - self.read
    }
}
impl<'a> crate::traits::reader::HasReader for &'a ZBuf {
    type Reader = ZBufReader<'a>;
    fn reader(self) -> Self::Reader {
        ZBufReader {
            inner: self,
            read: 0,
            slice: 0,
            byte: 0,
        }
    }
}
impl crate::traits::buffer::ConstructibleBuffer for ZBuf {
    fn with_capacities(slice_capacity: usize, _cache_capacity: usize) -> Self {
        ZBuf::with_slice_capacity(slice_capacity)
    }
}

impl ZBuf {
    fn append_zslice(&mut self, slice: ZSlice) -> Option<NonZeroUsize> {
        let len = slice.len();
        if len > 0 {
            self.add_zslice(slice);
            Some(unsafe { NonZeroUsize::new_unchecked(len) })
        } else {
            None
        }
    }
}
impl<T: Into<ZSlice>> crate::traits::buffer::InsertBuffer<T> for ZBuf {
    fn append(&mut self, slice: T) -> Option<NonZeroUsize> {
        self.append_zslice(slice.into())
    }
}

#[cfg(test)]
mod tests {
    use crate::{
        buffer::ConstructibleBuffer,
        reader::{HasReader, Reader},
        SplitBuffer,
    };

    use super::*;

    #[test]
    fn test_zbuf() {
        let v1 = ZSlice::from(vec![0_u8, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        let v2 = ZSlice::from(vec![10_u8, 11, 12, 13, 14, 15, 16, 17, 18, 19]);
        let v3 = ZSlice::from(vec![20_u8, 21, 22, 23, 24, 25, 26, 27, 28, 29]);

        // test a 1st buffer
        let mut buf1 = ZBuf::with_capacities(0, 0);
        assert!(buf1.is_empty());
        assert_eq!(0, buf1.len());
        assert_eq!(0, buf1.slices().len());

        buf1.add_zslice(v1.clone());
        println!("[01] {:?}", buf1);
        assert!(!buf1.is_empty());
        assert_eq!(10, buf1.len());
        assert_eq!(1, buf1.slices().len());
        assert_eq!(
            Some(&[0_u8, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]),
            buf1.slices().collect::<Vec<_>>()[0].get(0..10)
        );

        buf1.add_zslice(v2.clone());
        println!("[02] {:?}", buf1);
        assert!(!buf1.is_empty());
        assert_eq!(20, buf1.len());
        assert_eq!(2, buf1.slices().len());
        assert_eq!(
            Some(&[10_u8, 11, 12, 13, 14, 15, 16, 17, 18, 19][..]),
            buf1.slices().collect::<Vec<_>>()[1].get(0..10)
        );

        buf1.add_zslice(v3);
        println!("[03] {:?}", buf1);
        assert!(!buf1.is_empty());
        assert_eq!(30, buf1.len());
        assert_eq!(3, buf1.slices().len());
        assert_eq!(
            Some(&[20_u8, 21, 22, 23, 24, 25, 26, 27, 28, 29][..]),
            buf1.slices().collect::<Vec<_>>()[2].get(0..10)
        );

        // test PartialEq
        let v4 = vec![
            0_u8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
            23, 24, 25, 26, 27, 28, 29,
        ];
        assert_eq!(buf1, ZBuf::from(v4));

        // test read
        let mut buf1_reader = buf1.reader();
        for i in 0..buf1_reader.remaining() - 1 {
            assert_eq!(i as u8, buf1_reader.read_byte().unwrap());
        }
        assert!(buf1_reader.can_read());

        // test reset
        buf1_reader.reset();
        println!("[04] {:?}", buf1_reader);
        assert!(!buf1_reader.is_empty());
        assert!(buf1_reader.can_read());
        assert_eq!(30, buf1_reader.remaining());
        assert_eq!(30, buf1_reader.len());
        assert_eq!(3, buf1_reader.slices().len());

        // test set_pos / get_pos
        buf1_reader.reset();
        println!("[05] {:?}", buf1_reader);
        assert_eq!(30, buf1_reader.remaining());
        let mut bytes = [0_u8; 10];
        assert!(buf1_reader.read_exact(&mut bytes));
        assert_eq!(20, buf1_reader.remaining());
        let pos = buf1_reader.get_pos();
        assert!(buf1_reader.read_exact(&mut bytes));
        assert_eq!(10, buf1_reader.remaining());
        buf1_reader.set_pos(pos);
        assert_eq!(20, buf1_reader.remaining());
        assert!(buf1_reader.read_exact(&mut bytes));
        assert_eq!(10, buf1_reader.remaining());
        assert!(buf1_reader.read_exact(&mut bytes));
        assert_eq!(0, buf1_reader.remaining());
        let pos = buf1_reader.get_pos();
        buf1_reader.set_pos(pos);

        // test read_bytes
        buf1_reader.reset();
        println!("[06] {:?}", buf1_reader);
        let mut bytes = [0_u8; 3];
        for i in 0..10 {
            assert!(buf1_reader.read_exact(&mut bytes));
            println!(
                "[06][{}] {:?} Bytes: {:?}",
                i,
                buf1_reader,
                hex::encode_upper(bytes)
            );
            assert_eq!([i * 3, i * 3 + 1, i * 3 + 2], bytes);
        }

        // test other buffers sharing the same vecs
        let mut buf2 = ZBuf::from(v1.clone());
        buf2.add_zslice(v2);
        println!("[07] {:?}", buf1_reader);
        assert!(!buf2.is_empty());
        assert_eq!(20, buf2.len());
        assert_eq!(buf2.len(), buf2.reader().remaining());
        assert_eq!(2, buf2.slices().len());
        let mut buf2_reader = buf2.reader();
        for i in 0..buf2.len() - 1 {
            assert_eq!(i as u8, buf2_reader.read_byte().unwrap());
        }

        let buf3 = ZBuf::from(v1);
        println!("[08] {:?}", buf1_reader);
        assert!(!buf3.is_empty());
        let mut buf3 = buf3.reader();
        assert!(buf3.can_read());
        assert_eq!(0, buf3.get_pos().read);
        assert_eq!(10, buf3.remaining());
        assert_eq!(10, buf3.len());
        assert_eq!(1, buf3.slices().len());
        for i in 0..buf3.len() - 1 {
            assert_eq!(i as u8, buf3.read_byte().unwrap());
        }

        // test read_into_zbuf
        buf1_reader.reset();
        println!("[09] {:?}", buf1_reader);
        let _ = buf1_reader.read_byte();
        let mut dest = ZBuf::with_capacities(0, 0);
        assert!(buf1_reader.read_into_zbuf(&mut dest, 24));
        let dest_slices = dest.slices().collect::<Vec<_>>();
        assert_eq!(3, dest_slices.len());
        assert_eq!(
            Some(&[1_u8, 2, 3, 4, 5, 6, 7, 8, 9][..]),
            dest_slices[0].get(..)
        );
        assert_eq!(
            Some(&[10_u8, 11, 12, 13, 14, 15, 16, 17, 18, 19][..]),
            dest_slices[1].get(..)
        );
        assert_eq!(Some(&[20_u8, 21, 22, 23, 24][..]), dest_slices[2].get(..));

        // test drain_into_zbuf
        // buf1.reset();
        // println!("[10] {:?}", buf1);
        // let mut dest = ZBuf::default();
        // assert!(buf1.drain_into_zbuf(&mut dest));
        // assert_eq!(buf1.readable(), 0);
        // assert_eq!(buf1.len(), dest.readable());
    }
}