zed_sum_tree/
sum_tree.rs

1mod cursor;
2mod tree_map;
3
4use arrayvec::ArrayVec;
5pub use cursor::{Cursor, FilterCursor, Iter};
6use rayon::prelude::*;
7use std::marker::PhantomData;
8use std::mem;
9use std::{cmp::Ordering, fmt, iter::FromIterator, sync::Arc};
10pub use tree_map::{MapSeekTarget, TreeMap, TreeSet};
11
12#[cfg(test)]
13pub const TREE_BASE: usize = 2;
14#[cfg(not(test))]
15pub const TREE_BASE: usize = 6;
16
17/// An item that can be stored in a [`SumTree`]
18///
19/// Must be summarized by a type that implements [`Summary`]
20pub trait Item: Clone {
21    type Summary: Summary;
22
23    fn summary(&self, cx: <Self::Summary as Summary>::Context<'_>) -> Self::Summary;
24}
25
26/// An [`Item`] whose summary has a specific key that can be used to identify it
27pub trait KeyedItem: Item {
28    type Key: for<'a> Dimension<'a, Self::Summary> + Ord;
29
30    fn key(&self) -> Self::Key;
31}
32
33/// A type that describes the Sum of all [`Item`]s in a subtree of the [`SumTree`]
34///
35/// Each Summary type can have multiple [`Dimension`]s that it measures,
36/// which can be used to navigate the tree
37pub trait Summary: Clone {
38    type Context<'a>: Copy;
39    fn zero<'a>(cx: Self::Context<'a>) -> Self;
40    fn add_summary<'a>(&mut self, summary: &Self, cx: Self::Context<'a>);
41}
42
43pub trait ContextLessSummary: Clone {
44    fn zero() -> Self;
45    fn add_summary(&mut self, summary: &Self);
46}
47
48impl<T: ContextLessSummary> Summary for T {
49    type Context<'a> = ();
50
51    fn zero<'a>((): ()) -> Self {
52        T::zero()
53    }
54
55    fn add_summary<'a>(&mut self, summary: &Self, (): ()) {
56        T::add_summary(self, summary)
57    }
58}
59
60#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
61pub struct NoSummary;
62
63/// Catch-all implementation for when you need something that implements [`Summary`] without a specific type.
64/// We implement it on a `NoSummary` instead of re-using `()`, as that avoids blanket impl collisions with `impl<T: Summary> Dimension for T`
65/// (as we also need unit type to be a fill-in dimension)
66impl ContextLessSummary for NoSummary {
67    fn zero() -> Self {
68        NoSummary
69    }
70
71    fn add_summary(&mut self, _: &Self) {}
72}
73
74/// Each [`Summary`] type can have more than one [`Dimension`] type that it measures.
75///
76/// You can use dimensions to seek to a specific location in the [`SumTree`]
77///
78/// # Example:
79/// Zed's rope has a `TextSummary` type that summarizes lines, characters, and bytes.
80/// Each of these are different dimensions we may want to seek to
81pub trait Dimension<'a, S: Summary>: Clone {
82    fn zero(cx: S::Context<'_>) -> Self;
83
84    fn add_summary(&mut self, summary: &'a S, cx: S::Context<'_>);
85
86    fn from_summary(summary: &'a S, cx: S::Context<'_>) -> Self {
87        let mut dimension = Self::zero(cx);
88        dimension.add_summary(summary, cx);
89        dimension
90    }
91}
92
93impl<'a, T: Summary> Dimension<'a, T> for T {
94    fn zero(cx: T::Context<'_>) -> Self {
95        Summary::zero(cx)
96    }
97
98    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
99        Summary::add_summary(self, summary, cx);
100    }
101}
102
103pub trait SeekTarget<'a, S: Summary, D: Dimension<'a, S>> {
104    fn cmp(&self, cursor_location: &D, cx: S::Context<'_>) -> Ordering;
105}
106
107impl<'a, S: Summary, D: Dimension<'a, S> + Ord> SeekTarget<'a, S, D> for D {
108    fn cmp(&self, cursor_location: &Self, _: S::Context<'_>) -> Ordering {
109        Ord::cmp(self, cursor_location)
110    }
111}
112
113impl<'a, T: Summary> Dimension<'a, T> for () {
114    fn zero(_: T::Context<'_>) -> Self {}
115
116    fn add_summary(&mut self, _: &'a T, _: T::Context<'_>) {}
117}
118
119#[derive(Clone, Copy, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
120pub struct Dimensions<D1, D2, D3 = ()>(pub D1, pub D2, pub D3);
121
122impl<'a, T: Summary, D1: Dimension<'a, T>, D2: Dimension<'a, T>, D3: Dimension<'a, T>>
123    Dimension<'a, T> for Dimensions<D1, D2, D3>
124{
125    fn zero(cx: T::Context<'_>) -> Self {
126        Dimensions(D1::zero(cx), D2::zero(cx), D3::zero(cx))
127    }
128
129    fn add_summary(&mut self, summary: &'a T, cx: T::Context<'_>) {
130        self.0.add_summary(summary, cx);
131        self.1.add_summary(summary, cx);
132        self.2.add_summary(summary, cx);
133    }
134}
135
136impl<'a, S, D1, D2, D3> SeekTarget<'a, S, Dimensions<D1, D2, D3>> for D1
137where
138    S: Summary,
139    D1: SeekTarget<'a, S, D1> + Dimension<'a, S>,
140    D2: Dimension<'a, S>,
141    D3: Dimension<'a, S>,
142{
143    fn cmp(&self, cursor_location: &Dimensions<D1, D2, D3>, cx: S::Context<'_>) -> Ordering {
144        self.cmp(&cursor_location.0, cx)
145    }
146}
147
148/// Bias is used to settle ambiguities when determining positions in an ordered sequence.
149///
150/// The primary use case is for text, where Bias influences
151/// which character an offset or anchor is associated with.
152///
153/// # Examples
154/// Given the buffer `AˇBCD`:
155/// - The offset of the cursor is 1
156/// - [Bias::Left] would attach the cursor to the character `A`
157/// - [Bias::Right] would attach the cursor to the character `B`
158///
159/// Given the buffer `A«BCˇ»D`:
160/// - The offset of the cursor is 3, and the selection is from 1 to 3
161/// - The left anchor of the selection has [Bias::Right], attaching it to the character `B`
162/// - The right anchor of the selection has [Bias::Left], attaching it to the character `C`
163///
164/// Given the buffer `{ˇ<...>`, where `<...>` is a folded region:
165/// - The display offset of the cursor is 1, but the offset in the buffer is determined by the bias
166/// - [Bias::Left] would attach the cursor to the character `{`, with a buffer offset of 1
167/// - [Bias::Right] would attach the cursor to the first character of the folded region,
168///   and the buffer offset would be the offset of the first character of the folded region
169#[derive(Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Debug, Hash, Default)]
170pub enum Bias {
171    /// Attach to the character on the left
172    #[default]
173    Left,
174    /// Attach to the character on the right
175    Right,
176}
177
178impl Bias {
179    pub fn invert(self) -> Self {
180        match self {
181            Self::Left => Self::Right,
182            Self::Right => Self::Left,
183        }
184    }
185}
186
187/// A B+ tree in which each leaf node contains `Item`s of type `T` and a `Summary`s for each `Item`.
188/// Each internal node contains a `Summary` of the items in its subtree.
189///
190/// The maximum number of items per node is `TREE_BASE * 2`.
191///
192/// Any [`Dimension`] supported by the [`Summary`] type can be used to seek to a specific location in the tree.
193#[derive(Clone)]
194pub struct SumTree<T: Item>(Arc<Node<T>>);
195
196impl<T> fmt::Debug for SumTree<T>
197where
198    T: fmt::Debug + Item,
199    T::Summary: fmt::Debug,
200{
201    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
202        f.debug_tuple("SumTree").field(&self.0).finish()
203    }
204}
205
206impl<T: Item> SumTree<T> {
207    pub fn new(cx: <T::Summary as Summary>::Context<'_>) -> Self {
208        SumTree(Arc::new(Node::Leaf {
209            summary: <T::Summary as Summary>::zero(cx),
210            items: ArrayVec::new(),
211            item_summaries: ArrayVec::new(),
212        }))
213    }
214
215    /// Useful in cases where the item type has a non-trivial context type, but the zero value of the summary type doesn't depend on that context.
216    pub fn from_summary(summary: T::Summary) -> Self {
217        SumTree(Arc::new(Node::Leaf {
218            summary,
219            items: ArrayVec::new(),
220            item_summaries: ArrayVec::new(),
221        }))
222    }
223
224    pub fn from_item(item: T, cx: <T::Summary as Summary>::Context<'_>) -> Self {
225        let mut tree = Self::new(cx);
226        tree.push(item, cx);
227        tree
228    }
229
230    pub fn from_iter<I: IntoIterator<Item = T>>(
231        iter: I,
232        cx: <T::Summary as Summary>::Context<'_>,
233    ) -> Self {
234        let mut nodes = Vec::new();
235
236        let mut iter = iter.into_iter().fuse().peekable();
237        while iter.peek().is_some() {
238            let items: ArrayVec<T, { 2 * TREE_BASE }> = iter.by_ref().take(2 * TREE_BASE).collect();
239            let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
240                items.iter().map(|item| item.summary(cx)).collect();
241
242            let mut summary = item_summaries[0].clone();
243            for item_summary in &item_summaries[1..] {
244                <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
245            }
246
247            nodes.push(Node::Leaf {
248                summary,
249                items,
250                item_summaries,
251            });
252        }
253
254        let mut parent_nodes = Vec::new();
255        let mut height = 0;
256        while nodes.len() > 1 {
257            height += 1;
258            let mut current_parent_node = None;
259            for child_node in nodes.drain(..) {
260                let parent_node = current_parent_node.get_or_insert_with(|| Node::Internal {
261                    summary: <T::Summary as Summary>::zero(cx),
262                    height,
263                    child_summaries: ArrayVec::new(),
264                    child_trees: ArrayVec::new(),
265                });
266                let Node::Internal {
267                    summary,
268                    child_summaries,
269                    child_trees,
270                    ..
271                } = parent_node
272                else {
273                    unreachable!()
274                };
275                let child_summary = child_node.summary();
276                <T::Summary as Summary>::add_summary(summary, child_summary, cx);
277                child_summaries.push(child_summary.clone());
278                child_trees.push(Self(Arc::new(child_node)));
279
280                if child_trees.len() == 2 * TREE_BASE {
281                    parent_nodes.extend(current_parent_node.take());
282                }
283            }
284            parent_nodes.extend(current_parent_node.take());
285            mem::swap(&mut nodes, &mut parent_nodes);
286        }
287
288        if nodes.is_empty() {
289            Self::new(cx)
290        } else {
291            debug_assert_eq!(nodes.len(), 1);
292            Self(Arc::new(nodes.pop().unwrap()))
293        }
294    }
295
296    pub fn from_par_iter<I, Iter>(iter: I, cx: <T::Summary as Summary>::Context<'_>) -> Self
297    where
298        I: IntoParallelIterator<Iter = Iter>,
299        Iter: IndexedParallelIterator<Item = T>,
300        T: Send + Sync,
301        T::Summary: Send + Sync,
302        for<'a> <T::Summary as Summary>::Context<'a>: Sync,
303    {
304        let mut nodes = iter
305            .into_par_iter()
306            .chunks(2 * TREE_BASE)
307            .map(|items| {
308                let items: ArrayVec<T, { 2 * TREE_BASE }> = items.into_iter().collect();
309                let item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> =
310                    items.iter().map(|item| item.summary(cx)).collect();
311                let mut summary = item_summaries[0].clone();
312                for item_summary in &item_summaries[1..] {
313                    <T::Summary as Summary>::add_summary(&mut summary, item_summary, cx);
314                }
315                SumTree(Arc::new(Node::Leaf {
316                    summary,
317                    items,
318                    item_summaries,
319                }))
320            })
321            .collect::<Vec<_>>();
322
323        let mut height = 0;
324        while nodes.len() > 1 {
325            height += 1;
326            nodes = nodes
327                .into_par_iter()
328                .chunks(2 * TREE_BASE)
329                .map(|child_nodes| {
330                    let child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }> =
331                        child_nodes.into_iter().collect();
332                    let child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }> = child_trees
333                        .iter()
334                        .map(|child_tree| child_tree.summary().clone())
335                        .collect();
336                    let mut summary = child_summaries[0].clone();
337                    for child_summary in &child_summaries[1..] {
338                        <T::Summary as Summary>::add_summary(&mut summary, child_summary, cx);
339                    }
340                    SumTree(Arc::new(Node::Internal {
341                        height,
342                        summary,
343                        child_summaries,
344                        child_trees,
345                    }))
346                })
347                .collect::<Vec<_>>();
348        }
349
350        if nodes.is_empty() {
351            Self::new(cx)
352        } else {
353            debug_assert_eq!(nodes.len(), 1);
354            nodes.pop().unwrap()
355        }
356    }
357
358    #[allow(unused)]
359    pub fn items<'a>(&'a self, cx: <T::Summary as Summary>::Context<'a>) -> Vec<T> {
360        let mut items = Vec::new();
361        let mut cursor = self.cursor::<()>(cx);
362        cursor.next();
363        while let Some(item) = cursor.item() {
364            items.push(item.clone());
365            cursor.next();
366        }
367        items
368    }
369
370    pub fn iter(&self) -> Iter<'_, T> {
371        Iter::new(self)
372    }
373
374    pub fn cursor<'a, 'b, S>(
375        &'a self,
376        cx: <T::Summary as Summary>::Context<'b>,
377    ) -> Cursor<'a, 'b, T, S>
378    where
379        S: Dimension<'a, T::Summary>,
380    {
381        Cursor::new(self, cx)
382    }
383
384    /// Note: If the summary type requires a non `()` context, then the filter cursor
385    /// that is returned cannot be used with Rust's iterators.
386    pub fn filter<'a, 'b, F, U>(
387        &'a self,
388        cx: <T::Summary as Summary>::Context<'b>,
389        filter_node: F,
390    ) -> FilterCursor<'a, 'b, F, T, U>
391    where
392        F: FnMut(&T::Summary) -> bool,
393        U: Dimension<'a, T::Summary>,
394    {
395        FilterCursor::new(self, cx, filter_node)
396    }
397
398    #[allow(dead_code)]
399    pub fn first(&self) -> Option<&T> {
400        self.leftmost_leaf().0.items().first()
401    }
402
403    pub fn last(&self) -> Option<&T> {
404        self.rightmost_leaf().0.items().last()
405    }
406
407    pub fn update_last(
408        &mut self,
409        f: impl FnOnce(&mut T),
410        cx: <T::Summary as Summary>::Context<'_>,
411    ) {
412        self.update_last_recursive(f, cx);
413    }
414
415    fn update_last_recursive(
416        &mut self,
417        f: impl FnOnce(&mut T),
418        cx: <T::Summary as Summary>::Context<'_>,
419    ) -> Option<T::Summary> {
420        match Arc::make_mut(&mut self.0) {
421            Node::Internal {
422                summary,
423                child_summaries,
424                child_trees,
425                ..
426            } => {
427                let last_summary = child_summaries.last_mut().unwrap();
428                let last_child = child_trees.last_mut().unwrap();
429                *last_summary = last_child.update_last_recursive(f, cx).unwrap();
430                *summary = sum(child_summaries.iter(), cx);
431                Some(summary.clone())
432            }
433            Node::Leaf {
434                summary,
435                items,
436                item_summaries,
437            } => {
438                if let Some((item, item_summary)) = items.last_mut().zip(item_summaries.last_mut())
439                {
440                    (f)(item);
441                    *item_summary = item.summary(cx);
442                    *summary = sum(item_summaries.iter(), cx);
443                    Some(summary.clone())
444                } else {
445                    None
446                }
447            }
448        }
449    }
450
451    pub fn extent<'a, D: Dimension<'a, T::Summary>>(
452        &'a self,
453        cx: <T::Summary as Summary>::Context<'_>,
454    ) -> D {
455        let mut extent = D::zero(cx);
456        match self.0.as_ref() {
457            Node::Internal { summary, .. } | Node::Leaf { summary, .. } => {
458                extent.add_summary(summary, cx);
459            }
460        }
461        extent
462    }
463
464    pub fn summary(&self) -> &T::Summary {
465        match self.0.as_ref() {
466            Node::Internal { summary, .. } => summary,
467            Node::Leaf { summary, .. } => summary,
468        }
469    }
470
471    pub fn is_empty(&self) -> bool {
472        match self.0.as_ref() {
473            Node::Internal { .. } => false,
474            Node::Leaf { items, .. } => items.is_empty(),
475        }
476    }
477
478    pub fn extend<I>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
479    where
480        I: IntoIterator<Item = T>,
481    {
482        self.append(Self::from_iter(iter, cx), cx);
483    }
484
485    pub fn par_extend<I, Iter>(&mut self, iter: I, cx: <T::Summary as Summary>::Context<'_>)
486    where
487        I: IntoParallelIterator<Iter = Iter>,
488        Iter: IndexedParallelIterator<Item = T>,
489        T: Send + Sync,
490        T::Summary: Send + Sync,
491        for<'a> <T::Summary as Summary>::Context<'a>: Sync,
492    {
493        self.append(Self::from_par_iter(iter, cx), cx);
494    }
495
496    pub fn push(&mut self, item: T, cx: <T::Summary as Summary>::Context<'_>) {
497        let summary = item.summary(cx);
498        self.append(
499            SumTree(Arc::new(Node::Leaf {
500                summary: summary.clone(),
501                items: ArrayVec::from_iter(Some(item)),
502                item_summaries: ArrayVec::from_iter(Some(summary)),
503            })),
504            cx,
505        );
506    }
507
508    pub fn append(&mut self, other: Self, cx: <T::Summary as Summary>::Context<'_>) {
509        if self.is_empty() {
510            *self = other;
511        } else if !other.0.is_leaf() || !other.0.items().is_empty() {
512            if self.0.height() < other.0.height() {
513                for tree in other.0.child_trees() {
514                    self.append(tree.clone(), cx);
515                }
516            } else if let Some(split_tree) = self.push_tree_recursive(other, cx) {
517                *self = Self::from_child_trees(self.clone(), split_tree, cx);
518            }
519        }
520    }
521
522    fn push_tree_recursive(
523        &mut self,
524        other: SumTree<T>,
525        cx: <T::Summary as Summary>::Context<'_>,
526    ) -> Option<SumTree<T>> {
527        match Arc::make_mut(&mut self.0) {
528            Node::Internal {
529                height,
530                summary,
531                child_summaries,
532                child_trees,
533                ..
534            } => {
535                let other_node = other.0.clone();
536                <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
537
538                let height_delta = *height - other_node.height();
539                let mut summaries_to_append = ArrayVec::<T::Summary, { 2 * TREE_BASE }>::new();
540                let mut trees_to_append = ArrayVec::<SumTree<T>, { 2 * TREE_BASE }>::new();
541                if height_delta == 0 {
542                    summaries_to_append.extend(other_node.child_summaries().iter().cloned());
543                    trees_to_append.extend(other_node.child_trees().iter().cloned());
544                } else if height_delta == 1 && !other_node.is_underflowing() {
545                    summaries_to_append.push(other_node.summary().clone());
546                    trees_to_append.push(other)
547                } else {
548                    let tree_to_append = child_trees
549                        .last_mut()
550                        .unwrap()
551                        .push_tree_recursive(other, cx);
552                    *child_summaries.last_mut().unwrap() =
553                        child_trees.last().unwrap().0.summary().clone();
554
555                    if let Some(split_tree) = tree_to_append {
556                        summaries_to_append.push(split_tree.0.summary().clone());
557                        trees_to_append.push(split_tree);
558                    }
559                }
560
561                let child_count = child_trees.len() + trees_to_append.len();
562                if child_count > 2 * TREE_BASE {
563                    let left_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
564                    let right_summaries: ArrayVec<_, { 2 * TREE_BASE }>;
565                    let left_trees;
566                    let right_trees;
567
568                    let midpoint = (child_count + child_count % 2) / 2;
569                    {
570                        let mut all_summaries = child_summaries
571                            .iter()
572                            .chain(summaries_to_append.iter())
573                            .cloned();
574                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
575                        right_summaries = all_summaries.collect();
576                        let mut all_trees =
577                            child_trees.iter().chain(trees_to_append.iter()).cloned();
578                        left_trees = all_trees.by_ref().take(midpoint).collect();
579                        right_trees = all_trees.collect();
580                    }
581                    *summary = sum(left_summaries.iter(), cx);
582                    *child_summaries = left_summaries;
583                    *child_trees = left_trees;
584
585                    Some(SumTree(Arc::new(Node::Internal {
586                        height: *height,
587                        summary: sum(right_summaries.iter(), cx),
588                        child_summaries: right_summaries,
589                        child_trees: right_trees,
590                    })))
591                } else {
592                    child_summaries.extend(summaries_to_append);
593                    child_trees.extend(trees_to_append);
594                    None
595                }
596            }
597            Node::Leaf {
598                summary,
599                items,
600                item_summaries,
601            } => {
602                let other_node = other.0;
603
604                let child_count = items.len() + other_node.items().len();
605                if child_count > 2 * TREE_BASE {
606                    let left_items;
607                    let right_items;
608                    let left_summaries;
609                    let right_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>;
610
611                    let midpoint = (child_count + child_count % 2) / 2;
612                    {
613                        let mut all_items = items.iter().chain(other_node.items().iter()).cloned();
614                        left_items = all_items.by_ref().take(midpoint).collect();
615                        right_items = all_items.collect();
616
617                        let mut all_summaries = item_summaries
618                            .iter()
619                            .chain(other_node.child_summaries())
620                            .cloned();
621                        left_summaries = all_summaries.by_ref().take(midpoint).collect();
622                        right_summaries = all_summaries.collect();
623                    }
624                    *items = left_items;
625                    *item_summaries = left_summaries;
626                    *summary = sum(item_summaries.iter(), cx);
627                    Some(SumTree(Arc::new(Node::Leaf {
628                        items: right_items,
629                        summary: sum(right_summaries.iter(), cx),
630                        item_summaries: right_summaries,
631                    })))
632                } else {
633                    <T::Summary as Summary>::add_summary(summary, other_node.summary(), cx);
634                    items.extend(other_node.items().iter().cloned());
635                    item_summaries.extend(other_node.child_summaries().iter().cloned());
636                    None
637                }
638            }
639        }
640    }
641
642    fn from_child_trees(
643        left: SumTree<T>,
644        right: SumTree<T>,
645        cx: <T::Summary as Summary>::Context<'_>,
646    ) -> Self {
647        let height = left.0.height() + 1;
648        let mut child_summaries = ArrayVec::new();
649        child_summaries.push(left.0.summary().clone());
650        child_summaries.push(right.0.summary().clone());
651        let mut child_trees = ArrayVec::new();
652        child_trees.push(left);
653        child_trees.push(right);
654        SumTree(Arc::new(Node::Internal {
655            height,
656            summary: sum(child_summaries.iter(), cx),
657            child_summaries,
658            child_trees,
659        }))
660    }
661
662    fn leftmost_leaf(&self) -> &Self {
663        match *self.0 {
664            Node::Leaf { .. } => self,
665            Node::Internal {
666                ref child_trees, ..
667            } => child_trees.first().unwrap().leftmost_leaf(),
668        }
669    }
670
671    fn rightmost_leaf(&self) -> &Self {
672        match *self.0 {
673            Node::Leaf { .. } => self,
674            Node::Internal {
675                ref child_trees, ..
676            } => child_trees.last().unwrap().rightmost_leaf(),
677        }
678    }
679}
680
681impl<T: Item + PartialEq> PartialEq for SumTree<T> {
682    fn eq(&self, other: &Self) -> bool {
683        self.iter().eq(other.iter())
684    }
685}
686
687impl<T: Item + Eq> Eq for SumTree<T> {}
688
689impl<T: KeyedItem> SumTree<T> {
690    pub fn insert_or_replace<'a, 'b>(
691        &'a mut self,
692        item: T,
693        cx: <T::Summary as Summary>::Context<'b>,
694    ) -> Option<T> {
695        let mut replaced = None;
696        {
697            let mut cursor = self.cursor::<T::Key>(cx);
698            let mut new_tree = cursor.slice(&item.key(), Bias::Left);
699            if let Some(cursor_item) = cursor.item()
700                && cursor_item.key() == item.key()
701            {
702                replaced = Some(cursor_item.clone());
703                cursor.next();
704            }
705            new_tree.push(item, cx);
706            new_tree.append(cursor.suffix(), cx);
707            drop(cursor);
708            *self = new_tree
709        };
710        replaced
711    }
712
713    pub fn remove(&mut self, key: &T::Key, cx: <T::Summary as Summary>::Context<'_>) -> Option<T> {
714        let mut removed = None;
715        *self = {
716            let mut cursor = self.cursor::<T::Key>(cx);
717            let mut new_tree = cursor.slice(key, Bias::Left);
718            if let Some(item) = cursor.item()
719                && item.key() == *key
720            {
721                removed = Some(item.clone());
722                cursor.next();
723            }
724            new_tree.append(cursor.suffix(), cx);
725            new_tree
726        };
727        removed
728    }
729
730    pub fn edit(
731        &mut self,
732        mut edits: Vec<Edit<T>>,
733        cx: <T::Summary as Summary>::Context<'_>,
734    ) -> Vec<T> {
735        if edits.is_empty() {
736            return Vec::new();
737        }
738
739        let mut removed = Vec::new();
740        edits.sort_unstable_by_key(|item| item.key());
741
742        *self = {
743            let mut cursor = self.cursor::<T::Key>(cx);
744            let mut new_tree = SumTree::new(cx);
745            let mut buffered_items = Vec::new();
746
747            cursor.seek(&T::Key::zero(cx), Bias::Left);
748            for edit in edits {
749                let new_key = edit.key();
750                let mut old_item = cursor.item();
751
752                if old_item
753                    .as_ref()
754                    .is_some_and(|old_item| old_item.key() < new_key)
755                {
756                    new_tree.extend(buffered_items.drain(..), cx);
757                    let slice = cursor.slice(&new_key, Bias::Left);
758                    new_tree.append(slice, cx);
759                    old_item = cursor.item();
760                }
761
762                if let Some(old_item) = old_item
763                    && old_item.key() == new_key
764                {
765                    removed.push(old_item.clone());
766                    cursor.next();
767                }
768
769                match edit {
770                    Edit::Insert(item) => {
771                        buffered_items.push(item);
772                    }
773                    Edit::Remove(_) => {}
774                }
775            }
776
777            new_tree.extend(buffered_items, cx);
778            new_tree.append(cursor.suffix(), cx);
779            new_tree
780        };
781
782        removed
783    }
784
785    pub fn get<'a>(
786        &'a self,
787        key: &T::Key,
788        cx: <T::Summary as Summary>::Context<'a>,
789    ) -> Option<&'a T> {
790        let mut cursor = self.cursor::<T::Key>(cx);
791        if cursor.seek(key, Bias::Left) {
792            cursor.item()
793        } else {
794            None
795        }
796    }
797}
798
799impl<T, S> Default for SumTree<T>
800where
801    T: Item<Summary = S>,
802    S: for<'a> Summary<Context<'a> = ()>,
803{
804    fn default() -> Self {
805        Self::new(())
806    }
807}
808
809#[derive(Clone)]
810pub enum Node<T: Item> {
811    Internal {
812        height: u8,
813        summary: T::Summary,
814        child_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
815        child_trees: ArrayVec<SumTree<T>, { 2 * TREE_BASE }>,
816    },
817    Leaf {
818        summary: T::Summary,
819        items: ArrayVec<T, { 2 * TREE_BASE }>,
820        item_summaries: ArrayVec<T::Summary, { 2 * TREE_BASE }>,
821    },
822}
823
824impl<T> fmt::Debug for Node<T>
825where
826    T: Item + fmt::Debug,
827    T::Summary: fmt::Debug,
828{
829    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
830        match self {
831            Node::Internal {
832                height,
833                summary,
834                child_summaries,
835                child_trees,
836            } => f
837                .debug_struct("Internal")
838                .field("height", height)
839                .field("summary", summary)
840                .field("child_summaries", child_summaries)
841                .field("child_trees", child_trees)
842                .finish(),
843            Node::Leaf {
844                summary,
845                items,
846                item_summaries,
847            } => f
848                .debug_struct("Leaf")
849                .field("summary", summary)
850                .field("items", items)
851                .field("item_summaries", item_summaries)
852                .finish(),
853        }
854    }
855}
856
857impl<T: Item> Node<T> {
858    fn is_leaf(&self) -> bool {
859        matches!(self, Node::Leaf { .. })
860    }
861
862    fn height(&self) -> u8 {
863        match self {
864            Node::Internal { height, .. } => *height,
865            Node::Leaf { .. } => 0,
866        }
867    }
868
869    fn summary(&self) -> &T::Summary {
870        match self {
871            Node::Internal { summary, .. } => summary,
872            Node::Leaf { summary, .. } => summary,
873        }
874    }
875
876    fn child_summaries(&self) -> &[T::Summary] {
877        match self {
878            Node::Internal {
879                child_summaries, ..
880            } => child_summaries.as_slice(),
881            Node::Leaf { item_summaries, .. } => item_summaries.as_slice(),
882        }
883    }
884
885    fn child_trees(&self) -> &ArrayVec<SumTree<T>, { 2 * TREE_BASE }> {
886        match self {
887            Node::Internal { child_trees, .. } => child_trees,
888            Node::Leaf { .. } => panic!("Leaf nodes have no child trees"),
889        }
890    }
891
892    fn items(&self) -> &ArrayVec<T, { 2 * TREE_BASE }> {
893        match self {
894            Node::Leaf { items, .. } => items,
895            Node::Internal { .. } => panic!("Internal nodes have no items"),
896        }
897    }
898
899    fn is_underflowing(&self) -> bool {
900        match self {
901            Node::Internal { child_trees, .. } => child_trees.len() < TREE_BASE,
902            Node::Leaf { items, .. } => items.len() < TREE_BASE,
903        }
904    }
905}
906
907#[derive(Debug)]
908pub enum Edit<T: KeyedItem> {
909    Insert(T),
910    Remove(T::Key),
911}
912
913impl<T: KeyedItem> Edit<T> {
914    fn key(&self) -> T::Key {
915        match self {
916            Edit::Insert(item) => item.key(),
917            Edit::Remove(key) => key.clone(),
918        }
919    }
920}
921
922fn sum<'a, T, I>(iter: I, cx: T::Context<'_>) -> T
923where
924    T: 'a + Summary,
925    I: Iterator<Item = &'a T>,
926{
927    let mut sum = T::zero(cx);
928    for value in iter {
929        sum.add_summary(value, cx);
930    }
931    sum
932}
933
934#[cfg(test)]
935mod tests {
936    use super::*;
937    use rand::{distr::StandardUniform, prelude::*};
938    use std::cmp;
939
940    #[ctor::ctor]
941    fn init_logger() {
942        zlog::init_test();
943    }
944
945    #[test]
946    fn test_extend_and_push_tree() {
947        let mut tree1 = SumTree::default();
948        tree1.extend(0..20, ());
949
950        let mut tree2 = SumTree::default();
951        tree2.extend(50..100, ());
952
953        tree1.append(tree2, ());
954        assert_eq!(tree1.items(()), (0..20).chain(50..100).collect::<Vec<u8>>());
955    }
956
957    #[test]
958    fn test_random() {
959        let mut starting_seed = 0;
960        if let Ok(value) = std::env::var("SEED") {
961            starting_seed = value.parse().expect("invalid SEED variable");
962        }
963        let mut num_iterations = 100;
964        if let Ok(value) = std::env::var("ITERATIONS") {
965            num_iterations = value.parse().expect("invalid ITERATIONS variable");
966        }
967        let num_operations = std::env::var("OPERATIONS")
968            .map_or(5, |o| o.parse().expect("invalid OPERATIONS variable"));
969
970        for seed in starting_seed..(starting_seed + num_iterations) {
971            eprintln!("seed = {}", seed);
972            let mut rng = StdRng::seed_from_u64(seed);
973
974            let rng = &mut rng;
975            let mut tree = SumTree::<u8>::default();
976            let count = rng.random_range(0..10);
977            if rng.random() {
978                tree.extend(rng.sample_iter(StandardUniform).take(count), ());
979            } else {
980                let items = rng
981                    .sample_iter(StandardUniform)
982                    .take(count)
983                    .collect::<Vec<_>>();
984                tree.par_extend(items, ());
985            }
986
987            for _ in 0..num_operations {
988                let splice_end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
989                let splice_start = rng.random_range(0..splice_end + 1);
990                let count = rng.random_range(0..10);
991                let tree_end = tree.extent::<Count>(());
992                let new_items = rng
993                    .sample_iter(StandardUniform)
994                    .take(count)
995                    .collect::<Vec<u8>>();
996
997                let mut reference_items = tree.items(());
998                reference_items.splice(splice_start..splice_end, new_items.clone());
999
1000                tree = {
1001                    let mut cursor = tree.cursor::<Count>(());
1002                    let mut new_tree = cursor.slice(&Count(splice_start), Bias::Right);
1003                    if rng.random() {
1004                        new_tree.extend(new_items, ());
1005                    } else {
1006                        new_tree.par_extend(new_items, ());
1007                    }
1008                    cursor.seek(&Count(splice_end), Bias::Right);
1009                    new_tree.append(cursor.slice(&tree_end, Bias::Right), ());
1010                    new_tree
1011                };
1012
1013                assert_eq!(tree.items(()), reference_items);
1014                assert_eq!(
1015                    tree.iter().collect::<Vec<_>>(),
1016                    tree.cursor::<()>(()).collect::<Vec<_>>()
1017                );
1018
1019                log::info!("tree items: {:?}", tree.items(()));
1020
1021                let mut filter_cursor =
1022                    tree.filter::<_, Count>((), |summary| summary.contains_even);
1023                let expected_filtered_items = tree
1024                    .items(())
1025                    .into_iter()
1026                    .enumerate()
1027                    .filter(|(_, item)| (item & 1) == 0)
1028                    .collect::<Vec<_>>();
1029
1030                let mut item_ix = if rng.random() {
1031                    filter_cursor.next();
1032                    0
1033                } else {
1034                    filter_cursor.prev();
1035                    expected_filtered_items.len().saturating_sub(1)
1036                };
1037                while item_ix < expected_filtered_items.len() {
1038                    log::info!("filter_cursor, item_ix: {}", item_ix);
1039                    let actual_item = filter_cursor.item().unwrap();
1040                    let (reference_index, reference_item) = expected_filtered_items[item_ix];
1041                    assert_eq!(actual_item, &reference_item);
1042                    assert_eq!(filter_cursor.start().0, reference_index);
1043                    log::info!("next");
1044                    filter_cursor.next();
1045                    item_ix += 1;
1046
1047                    while item_ix > 0 && rng.random_bool(0.2) {
1048                        log::info!("prev");
1049                        filter_cursor.prev();
1050                        item_ix -= 1;
1051
1052                        if item_ix == 0 && rng.random_bool(0.2) {
1053                            filter_cursor.prev();
1054                            assert_eq!(filter_cursor.item(), None);
1055                            assert_eq!(filter_cursor.start().0, 0);
1056                            filter_cursor.next();
1057                        }
1058                    }
1059                }
1060                assert_eq!(filter_cursor.item(), None);
1061
1062                let mut before_start = false;
1063                let mut cursor = tree.cursor::<Count>(());
1064                let start_pos = rng.random_range(0..=reference_items.len());
1065                cursor.seek(&Count(start_pos), Bias::Right);
1066                let mut pos = rng.random_range(start_pos..=reference_items.len());
1067                cursor.seek_forward(&Count(pos), Bias::Right);
1068
1069                for i in 0..10 {
1070                    assert_eq!(cursor.start().0, pos);
1071
1072                    if pos > 0 {
1073                        assert_eq!(cursor.prev_item().unwrap(), &reference_items[pos - 1]);
1074                    } else {
1075                        assert_eq!(cursor.prev_item(), None);
1076                    }
1077
1078                    if pos < reference_items.len() && !before_start {
1079                        assert_eq!(cursor.item().unwrap(), &reference_items[pos]);
1080                    } else {
1081                        assert_eq!(cursor.item(), None);
1082                    }
1083
1084                    if before_start {
1085                        assert_eq!(cursor.next_item(), reference_items.first());
1086                    } else if pos + 1 < reference_items.len() {
1087                        assert_eq!(cursor.next_item().unwrap(), &reference_items[pos + 1]);
1088                    } else {
1089                        assert_eq!(cursor.next_item(), None);
1090                    }
1091
1092                    if i < 5 {
1093                        cursor.next();
1094                        if pos < reference_items.len() {
1095                            pos += 1;
1096                            before_start = false;
1097                        }
1098                    } else {
1099                        cursor.prev();
1100                        if pos == 0 {
1101                            before_start = true;
1102                        }
1103                        pos = pos.saturating_sub(1);
1104                    }
1105                }
1106            }
1107
1108            for _ in 0..10 {
1109                let end = rng.random_range(0..tree.extent::<Count>(()).0 + 1);
1110                let start = rng.random_range(0..end + 1);
1111                let start_bias = if rng.random() {
1112                    Bias::Left
1113                } else {
1114                    Bias::Right
1115                };
1116                let end_bias = if rng.random() {
1117                    Bias::Left
1118                } else {
1119                    Bias::Right
1120                };
1121
1122                let mut cursor = tree.cursor::<Count>(());
1123                cursor.seek(&Count(start), start_bias);
1124                let slice = cursor.slice(&Count(end), end_bias);
1125
1126                cursor.seek(&Count(start), start_bias);
1127                let summary = cursor.summary::<_, Sum>(&Count(end), end_bias);
1128
1129                assert_eq!(summary.0, slice.summary().sum);
1130            }
1131        }
1132    }
1133
1134    #[test]
1135    fn test_cursor() {
1136        // Empty tree
1137        let tree = SumTree::<u8>::default();
1138        let mut cursor = tree.cursor::<IntegersSummary>(());
1139        assert_eq!(
1140            cursor.slice(&Count(0), Bias::Right).items(()),
1141            Vec::<u8>::new()
1142        );
1143        assert_eq!(cursor.item(), None);
1144        assert_eq!(cursor.prev_item(), None);
1145        assert_eq!(cursor.next_item(), None);
1146        assert_eq!(cursor.start().sum, 0);
1147        cursor.prev();
1148        assert_eq!(cursor.item(), None);
1149        assert_eq!(cursor.prev_item(), None);
1150        assert_eq!(cursor.next_item(), None);
1151        assert_eq!(cursor.start().sum, 0);
1152        cursor.next();
1153        assert_eq!(cursor.item(), None);
1154        assert_eq!(cursor.prev_item(), None);
1155        assert_eq!(cursor.next_item(), None);
1156        assert_eq!(cursor.start().sum, 0);
1157
1158        // Single-element tree
1159        let mut tree = SumTree::<u8>::default();
1160        tree.extend(vec![1], ());
1161        let mut cursor = tree.cursor::<IntegersSummary>(());
1162        assert_eq!(
1163            cursor.slice(&Count(0), Bias::Right).items(()),
1164            Vec::<u8>::new()
1165        );
1166        assert_eq!(cursor.item(), Some(&1));
1167        assert_eq!(cursor.prev_item(), None);
1168        assert_eq!(cursor.next_item(), None);
1169        assert_eq!(cursor.start().sum, 0);
1170
1171        cursor.next();
1172        assert_eq!(cursor.item(), None);
1173        assert_eq!(cursor.prev_item(), Some(&1));
1174        assert_eq!(cursor.next_item(), None);
1175        assert_eq!(cursor.start().sum, 1);
1176
1177        cursor.prev();
1178        assert_eq!(cursor.item(), Some(&1));
1179        assert_eq!(cursor.prev_item(), None);
1180        assert_eq!(cursor.next_item(), None);
1181        assert_eq!(cursor.start().sum, 0);
1182
1183        let mut cursor = tree.cursor::<IntegersSummary>(());
1184        assert_eq!(cursor.slice(&Count(1), Bias::Right).items(()), [1]);
1185        assert_eq!(cursor.item(), None);
1186        assert_eq!(cursor.prev_item(), Some(&1));
1187        assert_eq!(cursor.next_item(), None);
1188        assert_eq!(cursor.start().sum, 1);
1189
1190        cursor.seek(&Count(0), Bias::Right);
1191        assert_eq!(
1192            cursor
1193                .slice(&tree.extent::<Count>(()), Bias::Right)
1194                .items(()),
1195            [1]
1196        );
1197        assert_eq!(cursor.item(), None);
1198        assert_eq!(cursor.prev_item(), Some(&1));
1199        assert_eq!(cursor.next_item(), None);
1200        assert_eq!(cursor.start().sum, 1);
1201
1202        // Multiple-element tree
1203        let mut tree = SumTree::default();
1204        tree.extend(vec![1, 2, 3, 4, 5, 6], ());
1205        let mut cursor = tree.cursor::<IntegersSummary>(());
1206
1207        assert_eq!(cursor.slice(&Count(2), Bias::Right).items(()), [1, 2]);
1208        assert_eq!(cursor.item(), Some(&3));
1209        assert_eq!(cursor.prev_item(), Some(&2));
1210        assert_eq!(cursor.next_item(), Some(&4));
1211        assert_eq!(cursor.start().sum, 3);
1212
1213        cursor.next();
1214        assert_eq!(cursor.item(), Some(&4));
1215        assert_eq!(cursor.prev_item(), Some(&3));
1216        assert_eq!(cursor.next_item(), Some(&5));
1217        assert_eq!(cursor.start().sum, 6);
1218
1219        cursor.next();
1220        assert_eq!(cursor.item(), Some(&5));
1221        assert_eq!(cursor.prev_item(), Some(&4));
1222        assert_eq!(cursor.next_item(), Some(&6));
1223        assert_eq!(cursor.start().sum, 10);
1224
1225        cursor.next();
1226        assert_eq!(cursor.item(), Some(&6));
1227        assert_eq!(cursor.prev_item(), Some(&5));
1228        assert_eq!(cursor.next_item(), None);
1229        assert_eq!(cursor.start().sum, 15);
1230
1231        cursor.next();
1232        cursor.next();
1233        assert_eq!(cursor.item(), None);
1234        assert_eq!(cursor.prev_item(), Some(&6));
1235        assert_eq!(cursor.next_item(), None);
1236        assert_eq!(cursor.start().sum, 21);
1237
1238        cursor.prev();
1239        assert_eq!(cursor.item(), Some(&6));
1240        assert_eq!(cursor.prev_item(), Some(&5));
1241        assert_eq!(cursor.next_item(), None);
1242        assert_eq!(cursor.start().sum, 15);
1243
1244        cursor.prev();
1245        assert_eq!(cursor.item(), Some(&5));
1246        assert_eq!(cursor.prev_item(), Some(&4));
1247        assert_eq!(cursor.next_item(), Some(&6));
1248        assert_eq!(cursor.start().sum, 10);
1249
1250        cursor.prev();
1251        assert_eq!(cursor.item(), Some(&4));
1252        assert_eq!(cursor.prev_item(), Some(&3));
1253        assert_eq!(cursor.next_item(), Some(&5));
1254        assert_eq!(cursor.start().sum, 6);
1255
1256        cursor.prev();
1257        assert_eq!(cursor.item(), Some(&3));
1258        assert_eq!(cursor.prev_item(), Some(&2));
1259        assert_eq!(cursor.next_item(), Some(&4));
1260        assert_eq!(cursor.start().sum, 3);
1261
1262        cursor.prev();
1263        assert_eq!(cursor.item(), Some(&2));
1264        assert_eq!(cursor.prev_item(), Some(&1));
1265        assert_eq!(cursor.next_item(), Some(&3));
1266        assert_eq!(cursor.start().sum, 1);
1267
1268        cursor.prev();
1269        assert_eq!(cursor.item(), Some(&1));
1270        assert_eq!(cursor.prev_item(), None);
1271        assert_eq!(cursor.next_item(), Some(&2));
1272        assert_eq!(cursor.start().sum, 0);
1273
1274        cursor.prev();
1275        assert_eq!(cursor.item(), None);
1276        assert_eq!(cursor.prev_item(), None);
1277        assert_eq!(cursor.next_item(), Some(&1));
1278        assert_eq!(cursor.start().sum, 0);
1279
1280        cursor.next();
1281        assert_eq!(cursor.item(), Some(&1));
1282        assert_eq!(cursor.prev_item(), None);
1283        assert_eq!(cursor.next_item(), Some(&2));
1284        assert_eq!(cursor.start().sum, 0);
1285
1286        let mut cursor = tree.cursor::<IntegersSummary>(());
1287        assert_eq!(
1288            cursor
1289                .slice(&tree.extent::<Count>(()), Bias::Right)
1290                .items(()),
1291            tree.items(())
1292        );
1293        assert_eq!(cursor.item(), None);
1294        assert_eq!(cursor.prev_item(), Some(&6));
1295        assert_eq!(cursor.next_item(), None);
1296        assert_eq!(cursor.start().sum, 21);
1297
1298        cursor.seek(&Count(3), Bias::Right);
1299        assert_eq!(
1300            cursor
1301                .slice(&tree.extent::<Count>(()), Bias::Right)
1302                .items(()),
1303            [4, 5, 6]
1304        );
1305        assert_eq!(cursor.item(), None);
1306        assert_eq!(cursor.prev_item(), Some(&6));
1307        assert_eq!(cursor.next_item(), None);
1308        assert_eq!(cursor.start().sum, 21);
1309
1310        // Seeking can bias left or right
1311        cursor.seek(&Count(1), Bias::Left);
1312        assert_eq!(cursor.item(), Some(&1));
1313        cursor.seek(&Count(1), Bias::Right);
1314        assert_eq!(cursor.item(), Some(&2));
1315
1316        // Slicing without resetting starts from where the cursor is parked at.
1317        cursor.seek(&Count(1), Bias::Right);
1318        assert_eq!(cursor.slice(&Count(3), Bias::Right).items(()), vec![2, 3]);
1319        assert_eq!(cursor.slice(&Count(6), Bias::Left).items(()), vec![4, 5]);
1320        assert_eq!(cursor.slice(&Count(6), Bias::Right).items(()), vec![6]);
1321    }
1322
1323    #[test]
1324    fn test_edit() {
1325        let mut tree = SumTree::<u8>::default();
1326
1327        let removed = tree.edit(vec![Edit::Insert(1), Edit::Insert(2), Edit::Insert(0)], ());
1328        assert_eq!(tree.items(()), vec![0, 1, 2]);
1329        assert_eq!(removed, Vec::<u8>::new());
1330        assert_eq!(tree.get(&0, ()), Some(&0));
1331        assert_eq!(tree.get(&1, ()), Some(&1));
1332        assert_eq!(tree.get(&2, ()), Some(&2));
1333        assert_eq!(tree.get(&4, ()), None);
1334
1335        let removed = tree.edit(vec![Edit::Insert(2), Edit::Insert(4), Edit::Remove(0)], ());
1336        assert_eq!(tree.items(()), vec![1, 2, 4]);
1337        assert_eq!(removed, vec![0, 2]);
1338        assert_eq!(tree.get(&0, ()), None);
1339        assert_eq!(tree.get(&1, ()), Some(&1));
1340        assert_eq!(tree.get(&2, ()), Some(&2));
1341        assert_eq!(tree.get(&4, ()), Some(&4));
1342    }
1343
1344    #[test]
1345    fn test_from_iter() {
1346        assert_eq!(
1347            SumTree::from_iter(0..100, ()).items(()),
1348            (0..100).collect::<Vec<_>>()
1349        );
1350
1351        // Ensure `from_iter` works correctly when the given iterator restarts
1352        // after calling `next` if `None` was already returned.
1353        let mut ix = 0;
1354        let iterator = std::iter::from_fn(|| {
1355            ix = (ix + 1) % 2;
1356            if ix == 1 { Some(1) } else { None }
1357        });
1358        assert_eq!(SumTree::from_iter(iterator, ()).items(()), vec![1]);
1359    }
1360
1361    #[derive(Clone, Default, Debug)]
1362    pub struct IntegersSummary {
1363        count: usize,
1364        sum: usize,
1365        contains_even: bool,
1366        max: u8,
1367    }
1368
1369    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1370    struct Count(usize);
1371
1372    #[derive(Ord, PartialOrd, Default, Eq, PartialEq, Clone, Debug)]
1373    struct Sum(usize);
1374
1375    impl Item for u8 {
1376        type Summary = IntegersSummary;
1377
1378        fn summary(&self, _cx: ()) -> Self::Summary {
1379            IntegersSummary {
1380                count: 1,
1381                sum: *self as usize,
1382                contains_even: (*self & 1) == 0,
1383                max: *self,
1384            }
1385        }
1386    }
1387
1388    impl KeyedItem for u8 {
1389        type Key = u8;
1390
1391        fn key(&self) -> Self::Key {
1392            *self
1393        }
1394    }
1395
1396    impl ContextLessSummary for IntegersSummary {
1397        fn zero() -> Self {
1398            Default::default()
1399        }
1400
1401        fn add_summary(&mut self, other: &Self) {
1402            self.count += other.count;
1403            self.sum += other.sum;
1404            self.contains_even |= other.contains_even;
1405            self.max = cmp::max(self.max, other.max);
1406        }
1407    }
1408
1409    impl Dimension<'_, IntegersSummary> for u8 {
1410        fn zero(_cx: ()) -> Self {
1411            Default::default()
1412        }
1413
1414        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1415            *self = summary.max;
1416        }
1417    }
1418
1419    impl Dimension<'_, IntegersSummary> for Count {
1420        fn zero(_cx: ()) -> Self {
1421            Default::default()
1422        }
1423
1424        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1425            self.0 += summary.count;
1426        }
1427    }
1428
1429    impl SeekTarget<'_, IntegersSummary, IntegersSummary> for Count {
1430        fn cmp(&self, cursor_location: &IntegersSummary, _: ()) -> Ordering {
1431            self.0.cmp(&cursor_location.count)
1432        }
1433    }
1434
1435    impl Dimension<'_, IntegersSummary> for Sum {
1436        fn zero(_cx: ()) -> Self {
1437            Default::default()
1438        }
1439
1440        fn add_summary(&mut self, summary: &IntegersSummary, _: ()) {
1441            self.0 += summary.sum;
1442        }
1443    }
1444}